数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalベクトルについて。(1) | Nomalベクトルについて。(0) | Nomalベクトル解析(1) | Nomal線形代数 証明(0) | Nomalベクトル解析のスカラー場について(2) | Nomalフーリエ展開とフーリエ変換(0) | Nomal加速度の次元と速度の次元(1) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal第2可算公理(0) | Nomalフェルマーの最終定理の簡単な証明9(25) | Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal無限和(2) | Nomal大学一年 線形代数(1) | Nomal大学で出された行列の課題がわかりません。(1) | Nomal広義積分(0) | Nomal 至急この問題を解説していただきたいです(0) | Nomal有理数(1) | Nomal論理関数(0) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal整数解(2) | Nomal数列の一般項(2) | Nomal統計学 二項分布(0) | Nomal連立微分方程式(1) | Nomal連立方程式(3) | Nomal全ての 整数解 等(0) | Nomal解析学(2) | Nomal行列のn乗(1) | Nomal色々な方法 で(0) | Nomal初期値問題(1) | Nomal解析学(1) | Nomal統計学 確率密度関数 分布関数 確率(0) | Nomal統計学についての質問(3) | Nomal対数尤度関数について!(0) | Nomal関数について(0) | Nomal最小公倍数とはちがいますが。。(2) | Nomal論理を教えて下さい(12) | Nomal三次方程式(2) | Nomal消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学(2) | Nomal線形代数(0) | Nomal極限(0) | Nomalボルスク・ウラムの定理の証明(0) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal素数(0) | Nomalデルタ関数に関する問題(0) | Nomal正三角形と半円(2) | Nomal不等式(2) | Nomal漸化式(0) | Nomal確率における情報(17) | Nomal統計学の質問(0) | Nomal確率変数(0) | Nomal複数の点によって構成される多角形を相互の距離情報から類推する方法(6) | Nomal正射影再び(笑)(4) | Nomal正射影:正三角形→2等辺三角形(2) | Nomal球面上の2つの円の重なっている部分の面積(0) | Nomal三角法(0) | Nomal大学数学です(0) | Nomal三角形(2) | Nomal数列の疑問(2) | Nomal素数積の評価〜ベルトラン・チェビシェフの定理(5) | Nomaleの極限(2) | Nomal積分(0) | Nomal四角形の極限(2) | Nomalベルトラン・チェビシェフの定理について。(2) | Nomalcosの積分の評価(0) | Nomal動点の確率(2) | Nomalsinの不等式(4) | Nomal極大と変曲(4) | Nomalピタゴラスの定理の簡単な証明(3) | Nomal複素積分の絶対値の評価(2) | Nomalリーマン積分可能性(3) | Nomalデデキントの切断による実数の構成(0) | Nomalベルトラン・チェビチェフの定理について。(0) | Nomalガウスの発散定理(0) | Nomal数列について。(0) | Nomal(1-x)^(-2)の展開式(2) | Nomal線形代数(0) | Nomal京大特色(1) | Nomal高校の範囲での証明(2) | Nomalこの表の見方を教えてください。(0) | Nomalヒルベルト空間(0) | Nomal$D_n$加群のフーリエ変換と関数のフーリエ変換との関係について(0) | Nomal群の問題(5) | Nomal合同式の計算(2) | Nomalプログラミング言語BASIC言語について。(14) | Nomal統計/区画幅について(3) | Nomal2変数関数の極値条件(2) | Nomal素数生成法について(0) | Nomalsupreme 偽物(0) | Nomal合同式の計算(4) | Nomal縦曲線について(0) | Nomal銃曲線における計画高ついて(0) | Nomal測量学について(0) | Nomal訂正です(1) |



■記事リスト / ▼下のスレッド
■50318 / 親記事)  デルタ関数に関する問題
□投稿者/ ナノナ 一般人(1回)-(2020/04/19(Sun) 21:34:39)
    インパルス信号には次のような性質があるようです。
    x(t0)がt=t0で連続なとき
    ∫[-∞→∞]δ(t-t0)x(t)dt=x(t0)・・・(1)

    一問目は
    (1)の式を用いて
    δ(at) = δ(t)/|a|・・・(2)
    (2)式の証明をする問題です。

    二問目は
    入力 x(t) およびインパルス応答 h(t) が以下の式で与えられる線形システムの出力 y(t) を求める問題です。
    (まず、y=∫[-∞→∞]h(τ )x(t-τ )dτ の x(τ )h(t − τ ) が 0 にならない範囲を求める)

    x(t) = {
    0 (t < 0)h(t)
    1 (t > 0)h(t)

    ={
    0 (t < 0)
    e^−t (t > 0)
引用返信/返信 [メール受信/ON]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50315 / 親記事)  正三角形と半円
□投稿者/ インター 一般人(1回)-(2020/04/18(Sat) 21:10:57)
    面積が2の正三角形の内部に面積が1の半円をおくことができますか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50316 / ResNo.1)  Re[1]: 正三角形と半円
□投稿者/ らすかる 一般人(25回)-(2020/04/18(Sat) 21:50:04)
    面積が2の正三角形の一辺の長さは(64/3)^(1/4)なので
    底辺の中点から斜辺までの距離は(3/4)^(1/4)≒0.931
    面積が1の半円の半径は√(2/π)≒0.798なので、余裕でおけます。

引用返信/返信 [メール受信/OFF]
■50317 / ResNo.2)  Re[2]: 正三角形と半円
□投稿者/ インター 一般人(2回)-(2020/04/18(Sat) 22:29:58)
    ありがとうございます。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50312 / 親記事)  不等式
□投稿者/ グルンカ 一般人(1回)-(2020/04/17(Fri) 22:58:40)
    nが2以上の自然数のとき、
    Σ[k=1,n-1]1/sin(kπ/n)<n*log(n)
    であることの証明を教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50313 / ResNo.1)  Re[1]: 不等式
□投稿者/ らすかる 一般人(24回)-(2020/04/18(Sat) 01:52:47)
    0<x<π/2でsinx>(2/π)xが成り立つ。
    nが奇数のとき
    Σ[k=1〜n-1]1/sin(kπ/n)
    =2Σ[k=1〜(n-1)/2]1/sin(kπ/n)
    <2Σ[k=1〜(n-1)/2]1/{(2/π)(kπ/n)}
    =nΣ[k=1〜(n-1)/2]1/k
    <n(∫[1/2〜(n-1)/2+1/2]dx/x)
    =n{log(n/2)-log(1/2)}
    =nlogn
    nが偶数のとき
    Σ[k=1〜n-1]1/sin(kπ/n)
    =1+2Σ[k=1〜n/2-1]1/sin(kπ/n)
    <1+2Σ[k=1〜n/2-1]1/{(2/π)(kπ/n)}
    =1+nΣ[k=1〜n/2-1]1/k
    <1+n(∫[1/2〜n/2-1+1/2]dx/x)
    =1+n{log((n-1)/2)-log(1/2)}
    =1+nlog(n-1)
    <nlogn (※)

    (※)
    1+nlog(n-1)<nlognは、
    f(x)=xlogx-(1+xlog(x-1))とおくと
    f'(x)<0, lim[x→∞]f(x)=0となることから言えます。

引用返信/返信 [メール受信/OFF]
■50314 / ResNo.2)  Re[2]: 不等式
□投稿者/ グルンカ 一般人(2回)-(2020/04/18(Sat) 10:03:39)
    ありがとうございます。
    全然分からなかったのでとても助かりました。
    一行目の不等式がポイントですね。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50311 / 親記事)  漸化式
□投稿者/ シネマ 一般人(1回)-(2020/04/17(Fri) 18:11:39)
    任意の自然数に対して個の実数が定義されており、
    以下の関係をみたしている。



    任意の自然数に関して

    であることが分かっているとするとき、残りのの求め方を教えて下さい。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▲上のスレッド
■50288 / 親記事)  確率における情報
□投稿者/ 小池百合コロナ 一般人(1回)-(2020/04/14(Tue) 15:55:50)
    以下の問題を素直に解くとどのようになるか教えてほしいのです。
    よろしくお願いします。

    投げたり落としたりすると1/6の確率で割れる皿が何枚かある。
    百合子がその皿を両手に一枚ずつ持って遠くに投げたら、
    一枚は空を飛んでいたカラスに当たって落ちて割れてしまった。
    もう一枚は百合子からは見えないし割れたような音も聞こえないほど遠くに投げられたため、百合子は皿の状態が確認できない。

    (1) 遠くに投げられた皿も割れている確率はいくらか。
    (つまり、百合子が投げた皿が2枚とも割れている確率はいくらか。)

    後日、百合子は崖へ行き、両手に一枚ずつ持っている皿を崖から落とした。
    下のほうの様子を目で確認することは出来ないが、ガチャンと皿が割れる音がするのを百合子は聞いた。
    少なくとも一枚の皿は割れていると百合子は確信した。

    (2) 百合子が落とした皿が2枚とも割れている確率はいくらか。
引用返信/返信 [メール受信/OFF]

▽[全レス17件(ResNo.13-17 表示)]
■50306 / ResNo.13)  Re[13]: 確率における情報
□投稿者/ 小池百合コロナ 一般人(9回)-(2020/04/15(Wed) 16:36:21)
    有難うございます。

    つまり、以下の3つの問題は、本質的に同じことを問うていると
    考えていいということでしょうか?
    1.
    投げたり落としたりすると1/6の確率で割れる皿が何枚かある。
    百合子がその皿を両手に一枚ずつ持って同時に遠くに投げたら、
    一枚は空を飛んでいたカラスに当たって落ちて割れてしまった。
    カラスは2枚の皿から無作為にどちらかの皿を選び当たるものとする。
    もう一枚は百合子からは見えないし割れたような音も聞こえないほど遠くに投げられたため、百合子は皿の状態が確認できない。
    遠くに投げられた皿も割れている確率はいくらか。
    2.
    部屋の中に人Aと人Bが居て、大小2つのサイコロがある。
    AとBの間にはついたてがある。
    Aがサイコロを2個振る。(目はBには見えない)
    Aは2個のサイコロのうち、1個のサイコロの値をBに言う。
    Aはどちらのサイコロを選んで値を言うかは無作為に決める。
    Bの聞いた値が1であったとき、もう一つのサイコロも1が出ている確率はいくらか。
    3.
    部屋の中に人Aと人Bが居て、大小2つのサイコロがある。
    AとBの間にはついたてがある。
    Aがサイコロを2個振る。(目はBには見えない)
    Aは2個のサイコロのうち、1個のサイコロの値をBに言う。
    Bの聞いた値が1であったとき、もう一つのサイコロも1が出ている確率はいくらか。
引用返信/返信 [メール受信/OFF]
■50307 / ResNo.14)  Re[14]: 確率における情報
□投稿者/ らすかる 一般人(22回)-(2020/04/15(Wed) 16:38:40)
    はい、同じことです。
引用返信/返信 [メール受信/OFF]
■50308 / ResNo.15)  Re[15]: 確率における情報
□投稿者/ 小池百合コロナ 一般人(10回)-(2020/04/15(Wed) 17:50:21)
    有難うございます。本当に丁寧に教えていただいて感謝しております。

    1. 2. 3. は
    「どちらかの目が1とわかったが、他のサイコロの目も1である確率」
    である、ということでしょうか?

    そして
    「どちらかの目が1とわかったが、他のサイコロの目も1である確率」と
    「どちらかの目が1とわかった場合に他のサイコロの目も1である確率」
    は異なるということでしょうか?


    ■50295のただのぞろ目の問題は、
    >確率は聞いた目の値と関係なく1/6です。
    とのことなので、
    >「どちらかの目がわかった場合に他のサイコロの目も同じ値である確率」
    というよりもむしろ、
    「どちらかの目がわかったが、他のサイコロの目も同じ値である確率」
    なのでしょうか?
引用返信/返信 [メール受信/OFF]
■50309 / ResNo.16)  Re[16]: 確率における情報
□投稿者/ らすかる 一般人(23回)-(2020/04/15(Wed) 18:18:18)
    > 1. 2. 3. は
    > 「どちらかの目が1とわかったが、他のサイコロの目も1である確率」
    > である、ということでしょうか?

    違います。その言い回しにすると意味が変わってしまいます。
    「一つのサイコロを無作為に選んだときにその目が1だったが、
     他のサイコロの目も1である確率」と言わないと正しく解釈されません。
    「どちらかの目が1とわかった」と書くと
    「二つのうち少なくとも一つは1であった」という意味に解釈されてしまいます。
    従って
    > そして
    > 「どちらかの目が1とわかったが、他のサイコロの目も1である確率」と
    > 「どちらかの目が1とわかった場合に他のサイコロの目も1である確率」
    > は異なるということでしょうか?
    この二つは同じです。

引用返信/返信 [メール受信/OFF]
■50310 / ResNo.17)  Re[17]: 確率における情報
□投稿者/ 小池百合コロナ 一般人(11回)-(2020/04/15(Wed) 21:10:14)
    ありがとうございました。
    頭の中が少しずつ整理されてきました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-9] [10-17]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター