数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalベクトルについて。(1) | Nomal複素関数(0) | Nomal三角関数の面積(2) | Nomal二次方程式の標準形への変換(1) | Nomal等式(3) | Nomal自然数の逆数和(1) | Nomal五角形(2) | Nomal極限(0) | Nomal桁数(1) | Nomal対数不等式(2) | Nomal三角関数(2) | Nomal不等式(2) | Nomal三次方程式(5) | Nomal数列(0) | Nomal複素級数のコーシー積(6) | Nomal統計学(1) | Nomal確率(2) | Nomal三次方程式の解(4) | Nomal確率(5) | Nomal確率(1) | Nomal接する(2) | Nomal整数(0) | Nomal待ち行列(1) | Nomal放物線と接線(2) | Nomal確率(2) | Nomal直角二等辺三角形と円の共通部分(2) | Nomal一次不等式で表される領域の面積(2) | Nomal管理人さんへ(1) | Nomal判別式(2) | Nomal数列の周期と初項(2) | Nomal近似式(2) | Nomal模範解答の解説お願いします(1) | Nomalベクトルについて。(1) | Nomal互いに素(1) | Nomalベクトルについて。(1) | Nomal二次方程式について。(1) | Nomal図形について。(1) | Nomal埋め(1) | Nomalベクトル(1) | Nomal極値(1) | Nomal極値(1) | Nomal代数学の問題(1) | Nomal位相空間の問題(1) | Nomal剰余の定理について。(1) | Nomal積分計算(2) | Nomal広義積分の質問(4) | Nomal積分範囲の極限(2) | Nomal複素数計算(2) | Nomal複素数の実部と虚部の分け方がわかりません(3) | Nomal(削除)(0) | Nomal正接の値(2) | Nomal積分に関する質問(1) | Nomal順列(6) | Nomal確率(1) | Nomal直線の通過領域(1) | Nomal場合の数(3) | Nomal数学検定2級について。(0) | Nomal二次関数について。(4) | Nomal円(5) | Nomal円順列(2) | Nomal不等式(4) | Nomal複素数(1) | Nomal模範解答の解説お願いします(1) | Nomal三角関数(1) | Nomal確率(1) | NomalP(a,b,c) = P(c|b) * P(b|a) 成立条件?(0) | Nomal確率統計についてです(0) | Nomal不等式(4) | Nomal自然数の和と倍数の性質(0) | Nomal円環(3) | Nomal三角関数(1) | Nomal微分(2) | Nomal√3 v.s. √-3(2) | Nomal多項式の解と係数(0) | Nomal有理数と整数(2) | Nomal曲線の長さ(1) | Nomal数的推理(3) | Nomal数的推理(2) | Nomal連立(1) | Nomal複素数(3) | Nomal2階導関数・第2次導関数(0) | Nomal微分(1) | Nomal数学では循環する定義・公理は許されていますか(1) | Nomal実数解の取り得る値の範囲(2) | Nomalクロム ハーツ 首饰 コピー(0) | Nomalベクトル場の問題(0) | Nomal自然数の謎(4) | Nomalバルビエの定理証明(1) | Nomal三角形(0) | Nomal数列(8) | Nomal整式について。(0) | Nomal確率について。(0) | Nomal直線と三角形(1) | Nomal2変数関数(1) | Nomal平行四辺形(2) | Nomal計算量について(1) | Nomal昔の東大模試の数列(2) | Nomal準同型写像(3) | Nomal互いに素(2) | Nomal数列の最大項(1) |



■記事リスト / ▼下のスレッド
■48496 / 親記事)  広義積分の質問
□投稿者/ こいち 一般人(1回)-(2018/07/28(Sat) 12:04:12)
    ∫(積分区間0→∞){e^(-ax)}sin(bx)dx
    の解き方を教えてください。
引用返信/返信 [メール受信/OFF]

▽[全レス4件(ResNo.1-4 表示)]
■48500 / ResNo.1)  Re[1]: 広義積分の質問
□投稿者/ らすかる 一般人(22回)-(2018/07/28(Sat) 14:40:35)
    a≠0かつb≠0のとき
    ∫e^(-ax)・sin(bx)dx
    =e^(-ax)/(-a)・sin(bx)-∫e^(-ax)/(-a)・bcos(bx)dx
    =-{e^(-ax)・sin(bx)}/a+(b/a)∫e^(-ax)・cos(bx)dx
    =-{e^(-ax)・sin(bx)}/a+(b/a){e^(-ax)/(-a)・cos(bx)-∫e^(-ax)/(-a)・(-b)sin(bx)dx}
    =-{e^(-ax)・sin(bx)}/a+(b/a){-{e^(-ax)・cos(bx)}/a-(b/a)∫e^(-ax)sin(bx)dx}
    =-{e^(-ax)・sin(bx)}/a-b{e^(-ax)・cos(bx)}/a^2-(b^2/a^2)∫e^(-ax)sin(bx)dx
    なので
    (1+b^2/a^2)∫e^(-ax)・sin(bx)dx=-{e^(-ax)・sin(bx)}/a-b{e^(-ax)・cos(bx)}/a^2+C1
    (a^2+b^2)∫e^(-ax)・sin(bx)dx=-e^(-ax)・{asin(bx)+bcos(bx)}+C1
    ∴∫e^(-ax)・sin(bx)dx=-e^(-ax)・{asin(bx)+bcos(bx)}/(a^2+b^2)+C2
    従って
    b=0のとき
    (与式)=∫[0〜∞]0dx=0
    b≠0,a=0のとき
    (与式)=∫[0〜∞]sin(bx)dx=[-cos(bx)/b][0〜∞]は発散
    b≠0,a<0のとき
    (与式)=[-e^(-ax)・{asin(bx)+bcos(bx)}/(a^2+b^2)][0〜∞]は発散
    b≠0,a>0のとき
    (与式)=[-e^(-ax)・{asin(bx)+bcos(bx)}/(a^2+b^2)][0〜∞]=b/(a^2+b^2)

引用返信/返信 [メール受信/OFF]
■48501 / ResNo.2)  Re[2]: 広義積分の質問
□投稿者/ こいち 一般人(3回)-(2018/07/28(Sat) 15:11:29)
    b≠0,a>0のとき
    (与式)=[-e^(-ax)・{asin(bx)+bcos(bx)}/(a^2+b^2)][0〜∞]=b/(a^2+b^2)
    の部分がどうしてこうなるのか詳しく教えていただきたいです。すみません。
引用返信/返信 [メール受信/OFF]
■48503 / ResNo.3)  Re[3]: 広義積分の質問
□投稿者/ らすかる 一般人(23回)-(2018/07/28(Sat) 15:43:24)
    a>0,x→∞のとき e^(-ax)→0,|asin(bx)|≦a,|bcos(bx)|≦|b|なので
    lim[x→∞]-e^(-ax)・{asin(bx)+bcos(bx)}/(a^2+b^2)=0
    x=0のとき
    e^(-ax)=1, asin(bx)=0, bcos(bx)=bなので
    x=0のとき-e^(-ax)・{asin(bx)+bcos(bx)}/(a^2+b^2)=-b/(a^2+b^2)
    よって(与式)=0-(-b/(a^2+b^2))=b/(a^2+b^2)

引用返信/返信 [メール受信/OFF]
■48506 / ResNo.4)  Re[4]: 広義積分の質問
□投稿者/ こいち 一般人(9回)-(2018/07/28(Sat) 16:13:17)
    解くことができました。ありがとうございました!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-4]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48502 / 親記事)  積分範囲の極限
□投稿者/ こいち 一般人(5回)-(2018/07/28(Sat) 15:12:24)
    1)lim(n→∞)1/n{√(1/n)+√(2/n)+...+√(n/n)}
    (2)lim(n→∞){1/(n+1)+1/(n+2)+...+1/2n}
    (3)lim(n→∞){1/√(n^2+1^2)+1/√(n^2+2^2)+...+1/√(n^2+n^2)}
    この3問の極限値を求める問題です。積分の範囲に含まれているので何かしら積分を利用するのかと思いますが、解法が分かりません。分かる方お願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48504 / ResNo.1)  Re[1]: 積分範囲の極限
□投稿者/ らすかる 一般人(24回)-(2018/07/28(Sat) 15:43:41)
    他板で回答しました。
引用返信/返信 [メール受信/OFF]
■48505 / ResNo.2)  Re[2]: 積分範囲の極限
□投稿者/ こいち 一般人(8回)-(2018/07/28(Sat) 16:07:14)
    ありがとうございました!!!助かりました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48493 / 親記事)  複素数計算
□投稿者/ かず 一般人(3回)-(2018/07/18(Wed) 11:30:28)
    前回の続きになってしまうのですがすみません
    虚部を0とした時実部を求める問題なのですが、
    K/{(jω+1)(jω+0.5)(jω+3)}=-{K(3.5ω^2-1.5)}/{(1+ω^2)(0.25+ω^2)(9+ω^2)}+j*{Kω(ω^2-4.5)}/{(1+ω^2)(0.25+ω^2)(9+ω^2)}

    ω=0,√4.5が0より実部は2K/3,4K/99と計算したのですが答えが違うようです
    計算し直してもこうなってしまうのですが恐らく実部虚部に分けるところが違う気がするのですがどこが間違えてしまってるでしょうか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48494 / ResNo.1)  Re[1]: 複素数計算
□投稿者/ らすかる 一般人(18回)-(2018/07/18(Wed) 12:10:32)
    K/{(jω+1)(jω+0.5)(jω+3)}
    =K(jω-1)(jω-0.5)(jω-3)/{(-ω^2-1)(-ω^2-0.25)(-ω^2-9)}
    =K(-1.5(3ω^2-1)+jω(ω^2-5))/{(1+ω^2)(0.25+ω^2)(9+ω^2)}
    =-1.5K(3ω^2-1)/{(1+ω^2)(0.25+ω^2)(9+ω^2)}+jKω(ω^2-5)/{(1+ω^2)(0.25+ω^2)(9+ω^2)}
    となりますので、そこまでの計算に問題がありそうです。

引用返信/返信 [メール受信/OFF]
■48495 / ResNo.2)  Re[2]: 複素数計算
□投稿者/ かず 一般人(4回)-(2018/07/18(Wed) 13:01:18)
    計算し直したら答えが合いました
    もう少し計算練習したいとおもいます
    ありがとうございました
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48489 / 親記事)  複素数の実部と虚部の分け方がわかりません
□投稿者/ かず 一般人(1回)-(2018/07/17(Tue) 16:16:10)
    K/{jω(jω+1)(jω+2)}=-3K/{(1+ω^2)(4+ω^2)}+j{K(ω^2-2)}/{ω(1+ω^2)(4+ω^2)}
    となるのですが途中式がありませんでした
    どのように計算すればいいのでしょうか
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■48490 / ResNo.1)  Re[1]: 複素数の実部と虚部の分け方がわかりません
□投稿者/ らすかる 一般人(16回)-(2018/07/17(Tue) 16:57:41)
    K/{jω(jω+1)(jω+2)}
    ={Kj(jω-1)(jω-2)}/{j^2ω(jω+1)(jω-1)(jω+2)(jω-2)}
    =-{Kj(jω-1)(jω-2)}/{ω(1+ω^2)(4+ω^2)}
    =-{K(-jω^2+3ω+2j)}/{ω(1+ω^2)(4+ω^2)}
    =-{K(3ω)}/{ω(1+ω^2)(4+ω^2)}-{K(-jω^2+2j)}/{ω(1+ω^2)(4+ω^2)}
    =-3K/{(1+ω^2)(4+ω^2)}+j{K(ω^2-2)}/{ω(1+ω^2)(4+ω^2)}
    となります。

引用返信/返信 [メール受信/OFF]
■48491 / ResNo.2)  Re[2]: 複素数の実部と虚部の分け方がわかりません
□投稿者/ かず 一般人(2回)-(2018/07/17(Tue) 18:19:35)
    返信ありがとうございます
    ちなみに分母が(jω+1)(jω+2)(jω+3)の時は(jω-1)(jω-2)(jω-3)を分母分子に掛け合わせればいいということでしょうか
引用返信/返信 [メール受信/OFF]
■48492 / ResNo.3)  Re[3]: 複素数の実部と虚部の分け方がわかりません
□投稿者/ らすかる 一般人(17回)-(2018/07/17(Tue) 18:48:15)
    その通りです。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▲上のスレッド
■48487 / 親記事)  (削除)
□投稿者/ -(2018/07/16(Mon) 17:21:42)
    この記事は(投稿者)削除されました
引用返信/返信 [メール受信/OFF]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター