数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalα^52(2) | Nomalモスキーノコピー(0) | Nomal放物線の標準形(4) | Nomal循環小数(2) | Nomal四角形の辺の長さ(2) | Nomalコラッツ予想について(2) | Nomal三角形の角(3) | Nomal約数関数とオイラー関数(0) | Nomal有理数と素数(1) | Nomal円と曲線(3) | Nomalフィボナッチ数列について。(0) | Nomal導関数の定義について(2) | Nomal楕円曲線(1) | Nomallog(1+x)<√x(4) | Nomal円と3次関数(4) | NomalΣと積分の交換(3) | Nomalcos(1)とtan(1/2)(2) | Nomal合成数(2) | Nomal積分について(2) | Nomal因数分解(4) | Nomal2次関数(1) | Nomal常用対数と桁数の関係(2) | Nomal(削除)(2) | Nomal行列を含む偏微分(0) | Nomalカタラン数(4) | Nomal無限級数(1) | Nomalスーパコピーvog.agvol.com/brand-70-c0.html ボーイロンドンブラドスパーピー(0) | Nomal大学数学 4次多項式 フェラーリの解法(0) | Nomalかんたんなフェルマーの最終定理の証明(19) | Nomal写像の問題です。(0) | Nomal離散数学 有向グラフの問題(0) | Nomal原始関数問題(1) | Nomal三角形と円の関係について(0) | Nomal|e^(icosθ)|、|e^(isinθ)|について(2) | Nomal大学数学 重積分(0) | Nomal簡単な論理式〜変な質問ですみませんが・・・(2) | Nomal割り算(1) | Nomal確率の問題です。大至急お願い致します(0) | Nomal整数解(7) | Nomal全ての 整数解 等(4) | Nomal完璧なのコピーbuytowe(0) | Nomal素数(1) | Nomal指数計算の練習(2) | Nomal微分積分(0) | Nomalテイラー展開(0) | Nomal合同式(1) | Nomalエルミート行列(0) | Nomal【大学数学】貨幣需要関数(0) | Nomal陰関数(0) | Nomalフェルマーの最終定理の証明(6) | Nomal統計学(0) | Nomalベクトル空間(0) | Nomal複素数の三角不等式(引き算)(2) | Nomal微分の問題(0) | Nomal体積(1) | Nomalフェルマーの最終定理の証明(z=x+rとおく方法)(1) | Nomal微分可能(2) | Nomalチェビシェフ 偏差値(0) | Nomal線形代数(1) | Nomal複素積分(2) | Nomalテイラー展開(2) | Nomal線形変換(1) | Nomal大学数学 線形代数 部分空間の証明(0) | Nomal証明問題(1) | Nomal一次結合と一次独立(0) | Nomal証明問題です(0) | Nomalz^5 = -1 を解く(2) | Nomal空間上の点(2) | Nomal複素関数の部分分数分解(4) | Nomal熱力学の本に出てくる式変形がわかりません。(0) | Nomalピタゴラス数の求め方(0) | Nomal二項定理を使ったピタゴラスの定理の証明(0) | Nomal二項定理を使ったフェルマーの最終定理の証明(0) | Nomal2次方程式(3) | Nomal数学A 図形の計算(0) | Nomalある式の微分における式変形について(2) | Nomal3次元空間の点(2) | Nomal線形代数」(0) | Nomal統計学の問題(0) | Nomal(削除)(3) | Nomal1/(z^2-1) を z = 1 でローラン展開する。(2) | Nomal無限等比級数について(2) | Nomalcosの不等式(2) | Nomal品質の服(0) | Nomal複素平面上の円(2) | Nomal積分の解き方について(0) | Nomal期待値(2) | Nomal3の個数(7) | Nomal複素数の関数(5) | Nomal分数関数の積分(2) | Nomalベクトルについて。(1) | Nomalベクトルについて。(0) | Nomalベクトル解析(1) | Nomal線形代数 証明(0) | Nomalベクトル解析のスカラー場について(2) | Nomalフーリエ展開とフーリエ変換(0) | Nomal加速度の次元と速度の次元(1) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal第2可算公理(0) | Nomalフェルマーの最終定理の簡単な証明9(25) |



■記事リスト / ▼下のスレッド
■50421 / 親記事)  線形代数
□投稿者/ Fav. 一般人(1回)-(2020/07/29(Wed) 01:16:19)
    ファイルに添付した問題が分かりません。30日までなのでなるべく急いでお願いします。
1108×1478 => 187×250

S__39075842.jpg
/145KB
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50420 / 親記事)  確率論 幾何分布
□投稿者/ みんく 一般人(3回)-(2020/07/26(Sun) 22:51:35)
    すみません、こちらもわからず苦戦しています。どなたか、解答と解説のほうしていただくと助かります。
828×267 => 250×80

E629A1DD-FE2F-4CA9-947A-EB2CD3BFB138.jpeg
/37KB
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50419 / 親記事)  大学数学 確率論
□投稿者/ みんく 一般人(1回)-(2020/07/26(Sun) 22:49:01)
    すみません。こちらの問題の解き方教えてください。途中式と答えもお願いします!
828×834 => 249×250

B628899E-6F01-4513-8328-DA99219BE401.jpeg
/92KB
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50418 / 親記事)  線形代数 行列
□投稿者/ とらほー 一般人(1回)-(2020/07/26(Sun) 22:02:46)
    行列の問題です
    途中式も含めて教えていただけると助かります
640×159 => 250×62

5C2CD0C9-1AED-48F9-B9CD-A75508605498.jpeg
/29KB
引用返信/返信 [メール受信/OFF]



■記事リスト / ▲上のスレッド
■50408 / 親記事)  無限和
□投稿者/ ai 一般人(1回)-(2020/07/12(Sun) 16:28:28)
    こちらの問題解ける方、お願いします
336×196 => 250×145

1594538908.png
/17KB
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50415 / ResNo.1)  Re[1]: 無限和
□投稿者/ WIZ 一般人(4回)-(2020/07/21(Tue) 19:12:47)
    s(x) = Σ[n=0, ∞]{x^(3n)} とおくと、等比級数の和より
    s(x) = lim[n→∞]{(1-x^(3(n+1)))/(1-x^3)} です。
    よって、|x| < 1 ならば、s(x) = 1/(1-x^3) となります。

    F(x) = ∫s(x)dx = Σ[n=0, ∞]{(x^(3n+1))/(3n+1)} とおきます。
    すると、求める無限和の値は -lim[x→-1]F(x) となります。

    F(x) = ∫{1/(1-x^3)}dx
    = (1/3)∫{1/(1-x)+(2+x)/(1+x+x^2)}dx
    = (1/3)∫{1/(1-x)}dx+(1/3)∫{((1/2)(1+2x)+(3/2))/(1+x+x^2)}dx
    = -(1/3)log(|x-1|)+(1/6)log(|1+x+x^2|)+(1/2)∫{1/(3/4+(x+1/2)^2)}dx

    x+1/2 = ((√3)/2)u とおくと、dx = ((√3)/2)du なので、上記最後の積分は

    (1/2)∫{1/(((√3)/2)^2+((√3)u/2)^2)}((√3)/2)du
    = (1/√3)∫{1/(1+u^2)}du
    = (1/√3)arctan(u)
    = (1/√3)arctan((2x+1)/√3)

    よって、
    -lim[x→-1]F(x)
    = -lim[x→-1]{-(1/3)log(|x-1|)+(1/6)log(|1+x+x^2|)+(1/√3)arctan((2x+1)/√3)}
    = (1/3)log(|(-1)-1|)-(1/6)log(|1+(-1)+(-1)^2|)-(1/√3)arctan((2*(-1)+1)/√3)
    = (1/3)log(2)-(1/6)log(1)-(1/√3)arctan(-1/√3)
    = (1/3)log(2)+(1/√3)(π/6)

    計算間違いしているかも知れませんので、スレ主さんの方でよく検算してみてください。
引用返信/返信 [メール受信/OFF]
■50416 / ResNo.2)  Re[2]: 無限和
□投稿者/ らすかる 一般人(1回)-(2020/07/21(Tue) 19:16:20)
    ↓こちらによると
    ttps://www.wolframalpha.com/input/?i=sum+%28-1%29%5En%2F%283n%2B1%29%2Cn%3D0+to+inf&lang=ja
    解はlog2/3+π/(3√3)らしいです。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター