数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalプログラミング言語BASIC言語について。(14) | Nomal統計/区画幅について(3) | Nomal2変数関数の極値条件(2) | Nomal素数生成法について(0) | Nomalsupreme 偽物(0) | Nomal合同式の計算(4) | Nomal縦曲線について(0) | Nomal銃曲線における計画高ついて(0) | Nomal測量学について(0) | Nomal訂正です(1) | Nomal対数の取り方、シグモイド、ロジスティック関数(0) | Nomal緩和曲線の開始位置と終了地点および途中の高さxについて(0) | Nomalf'(x) の増減の判定方法(3) | Nomal三角形と内接円について改(1) | Nomal三角形と内接円について。(1) | Nomal増減表の作り方(6) | Nomal4次関数(3) | Nomal約数を mod 13 で見る(1) | Nomal三葉曲線の長さについて(2) | Nomal自作問題(3) | Nomalフェルマーの最終定理の簡単な証明9(23) | Nomal(削除)(0) | Nomalケプラー方程式による惑星の会合計算(0) | Nomal追いかけ算 惑星会合時期(1) | Nomal担当者の時間割(2) | Nomal三次関数と長方形(4) | Nomal(削除)(0) | Nomal屑スレを下げるための問題(2) | Nomal3次関数について。(8) | Nomal必要十分条件の証明(3) | Nomalフェルマーの最終定理の簡単な証明8(74) | Nomal合コン(4) | Nomal基本的な確率(2) | Nomal同型写像(0) | Nomal正2n角形と確率(4) | Nomal中学生でも解けそうな入試問題001(1) | Nomalご教示ください(5) | Nomal階段行列の作り方(4) | Nomal統計学の問題です(0) | Nomal3の倍数(4) | Nomalラプラス方程式 境界条件(0) | Nomal対偶について(8) | Nomal偶数と奇数(8) | Nomalsinの関係(2) | Nomal2^(1/3)とωと√3(4) | Nomal supreme コート(0) | Nomalフェルマーの最終定理の簡単な証明7(101) | Nomal目的の形への行列の三角化(2) | Nomal(削除)(2) | Nomal等角写像の問題です。(2) | Nomal掲示板について。(1) | Nomalフェルマーの定理 RSA暗号(1) | Nomalフェルマーの最終定理の簡単な証明6(101) | Nomalオイラーの公式(3) | Nomalグッチンコピー(0) | Nomal6次方程式(2) | Nomalベクトル解析 証明(0) | Nomal位相数学、位相空間(0) | Nomal実生活に活きる確率(0) | Nomalオイラーの公式 導関数の定義(2) | Nomalオイラーの公式(3) | Nomal2階常微分方程式 (1) | Nomalオイラーの公式(0) | Nomalフェルマーの最終定理の簡単な証明5(101) | Nomal数学について。(1) | Nomal順列(4) | Nomal線形代数(1) | Nomal整数問題(1) | Nomalフェルマーの最終定理の簡単な証明4(101) | Nomal大小の比較(7) | Nomalシミュレーションについて(1) | Nomal期待値(2) | Nomal数学について。(1) | Nomalフーリエ変換の求め方(1) | Nomalisometric matrix,p-ノルムについて(0) | Nomalフェルマーの最終定理の簡単な証明3(76) | Nomald(cos^2θ)/dθ=と置けるような相似の図を見つけたいです!(0) | Nomal1/ cos^2θの微分を画像の図を用いて解きたい!(0) | Nomalラグランジュの剰余項(1) | Nomallog2とマクローリン展開についての証明(1) | Nomal極限を求める(大学数学)(1) | Nomal三角方程式(2) | Nomal確率密度(2) | Nomal方程式(2) | Nomal多項式の係数(1) | Nomalフェルマーの最終定理の簡単な証明2(101) | Nomal複素平面上の領域について(0) | Nomal数学検定について。(0) | Nomal複素解析(2) | Nomal定積分と体積(1) | Nomal極限値(3) | Nomal複素解析(7) | Nomalフェルマーの最終定理の簡単な証明(101) | Nomal高校推論の問題(1) | Nomal漸化式の項を減らす(4) | Nomalカーリングの7試合とは(4) | Nomal(削除)(3) | Nomalたぶん三角関数の等式(6) | Nomal確率、期待値の計算(0) | Nomal数学オリンピックの幾何の問題(2) |



■記事リスト / ▼下のスレッド
■48852 / 親記事)  二次方程式の標準形への変換
□投稿者/ ライカー 一般人(1回)-(2018/10/04(Thu) 22:18:49)
    座標変換の公式よりこの新しい座標軸に対して、テキストに、「複号は直線ax+hy+α=0のどの向きをx'軸にとるかによって定まってくる。すなわち、直線2a(g-α)x+2(af-ha)y+ac-α^2=0に対して、原点と同じ側、または原点と反対側をx'軸の正の部分とするにしたがって、±は、ax+hy+α=0の符号と一致させて、または反対のものを採用すればよい。」とあるのですが、どのようなことを説明しているのかが理解できません。ご教授いただければと思います。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48861 / ResNo.1)  Re[1]: 二次方程式の標準形への変換
□投稿者/ ライカー 一般人(2回)-(2018/10/08(Mon) 05:16:54)
    No48852に返信(ライカーさんの記事)
    > 座標変換の公式よりこの新しい座標軸に対して、テキストに、「複号は直線ax+hy+α=0のどの向きをx'軸にとるかによって定まってくる。すなわち、直線2a(g-α)x+2(af-ha)y+ac-α^2=0に対して、原点と同じ側、または原点と反対側をx'軸の正の部分とするにしたがって、±は、ax+hy+α=0の符号と一致させて、または反対のものを採用すればよい。」とあるのですが、どのようなことを説明しているのかが理解できません。ご教授いただければと思います。


    わかりました。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48857 / 親記事)  等式
□投稿者/ 喰レポ 一般人(1回)-(2018/10/07(Sun) 13:25:11)
    教えて下さい。

    相異なる数x,y,zが
    (2x-1)/(x-y)=(2y-1)/(y-z)=(2z-1)/(z-x)
    を満たしているとき、x,y,zのうち少なく
    とも一つは虚数であることを示せ。
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■48858 / ResNo.1)  Re[1]: 等式
□投稿者/ らすかる 一般人(28回)-(2018/10/07(Sun) 14:16:17)
    (2x-1)/(x-y)=(2y-1)/(y-z)=(2z-1)/(z-x)=kとおく。
    もしk=0とすると2x-1=2y-1=2z-1=0からx=y=z=1/2となり
    分母の条件 x-y≠0,y-z≠0,z-x≠0を満たさないので
    k≠0,x≠1/2,y≠1/2,z≠1/2
    k(x-y)=2x-1から y=((k-2)x+1)/k … (1)
    k(y-z)=2y-1から z=((k-2)y+1)/k … (2)
    k(z-x)=2z-1から x=((k-2)z+1)/k … (3)
    (1)を(2)に代入して整理すると
    z=(((k-2)^2)x+2k-2)/k^2 … (4)
    (4)を(3)に代入して整理すると
    (3k^2-6k+4)(2x-1)=0
    x≠1/2なので 3k^2-6k+4=0
    これを解いてk=1±i/√3
    x,y,zが全て実数のときkは実数となるので、
    k=1±i/√3であることからx,y,zのうち少なくとも一つは虚数。

引用返信/返信 [メール受信/OFF]
■48859 / ResNo.2)  Re[1]: 等式
□投稿者/ らすかる 一般人(29回)-(2018/10/07(Sun) 14:36:40)
    別解
    もし式の値が0だとすると2x-1=2y-1=2z-1=0からx=y=z=1/2となり
    分母の条件 x-y≠0,y-z≠0,z-x≠0を満たさないので矛盾。
    よって式の値は0ではないので全項を逆数にしても等号は成り立つ。
    (x-y)/(2x-1)=(y-z)/(2y-1)=(z-x)/(2z-1)から
    2(x-y)/(2x-1)=2(y-z)/(2y-1)=2(z-x)/(2z-1)
    1-(2y-1)/(2x-1)=1-(2z-1)/(2y-1)=1-(2x-1)/(2z-1)
    (2y-1)/(2x-1)=(2z-1)/(2y-1)=(2x-1)/(2z-1)
    この式の値をkとするとk^3=1だが
    もしk=1とするとx=y=zとなり矛盾するので
    kは1の虚数三乗根。
    従ってx,y,zのうち少なくとも二つは虚数とわかる。

引用返信/返信 [メール受信/OFF]
■48860 / ResNo.3)  Re[2]: 等式
□投稿者/ 喰レポ 一般人(2回)-(2018/10/07(Sun) 17:33:47)
    大変エレガントな別解に感動いたしました。
    ありがとうございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48855 / 親記事)  (削除)
□投稿者/ -(2018/10/06(Sat) 13:02:16)
    この記事は(投稿者)削除されました
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48846 / 親記事)  五角形
□投稿者/ 工務店能美 一般人(1回)-(2018/09/27(Thu) 15:36:06)
    正五角形ではないが、角の大きさは全て等しい五角形は、
    少なくとも一本の辺の長さが無理数である。

    これって正しいですか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48847 / ResNo.1)  Re[1]: 五角形
□投稿者/ らすかる 一般人(25回)-(2018/09/27(Thu) 17:09:54)
    正しいです。
引用返信/返信 [メール受信/OFF]
■48851 / ResNo.2)  Re[2]: 五角形
□投稿者/ 工務店能美 一般人(2回)-(2018/10/01(Mon) 21:07:51)
    ありがとうございます。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▲上のスレッド
■48848 / 親記事)  桁数
□投稿者/ waka 一般人(6回)-(2018/09/28(Fri) 17:46:53)
    P=(1/100)×60^(99)を16進法で表したとき、その整数部分の桁数を求めよ。という問題が分かりません。よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48849 / ResNo.1)  Re[1]: 桁数
□投稿者/ らすかる 一般人(26回)-(2018/09/28(Fri) 20:39:42)
    何を既知としてよいかによって答え方がまるで変わると思いますが、
    とりあえず私が暗記している範囲で
    log[10]2=0.30103、log[10]3=0.4771として計算してよいものとすると

    log[10]P=log[10]{(1/100)×60^(99)}
    =log[10](1/100)+log[10]{60^(99)}
    =-2+99log[10]60
    =-2+99log[10](10×3×2)
    =-2+99(log[10]10+log[10]3+log[10]2)
    =-2+99(1+0.30103+0.4771)
    =-2+99×1.77813
    =174.03487
    log[2]P=log[10]P/log[10]2=174.03487/0.30103≒578.1313
    よってPは2進法で579桁なので、16進法では[(579+3)/4]=145桁。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター