数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalフェルマーの最終定理の簡単な証明9(15) | Nomal期待値(0) | Nomalジャンケンポン(0) | Nomal1次分数関数(0) | Nomal三次関数と長方形(4) | Nomalx^3 + y^3 + z^3 = w^3(1) | Nomalコンデンサー回路(1) | Nomal屑スレを下げるための問題(4) | Nomaltan(1)(ラディアン) は有理数か(0) | Nomalラプラス変換 vs 演算子法(0) | Nomal有理数解を持たない三次方程式(0) | Nomal円柱の表面積(1) | Nomal三段論法(1) | Nomalド・モルガンの法則(0) | Nomal簡単な微分方程式(0) | Nomal3次関数について。(8) | Nomal必要十分条件の証明(3) | Nomal6÷2×3 = 9(1) | Nomalフェルマーの最終定理の簡単な証明8(74) | Nomal合コン(4) | Nomal基本的な確率(2) | Nomal同型写像(0) | Nomal正2n角形と確率(4) | Nomal中学生でも解けそうな入試問題001(1) | Nomalご教示ください(5) | Nomal階段行列の作り方(4) | Nomal統計学の問題です(0) | Nomal3の倍数(4) | Nomalラプラス方程式 境界条件(0) | Nomal対偶について(8) | Nomal偶数と奇数(8) | Nomalsinの関係(2) | Nomal2^(1/3)とωと√3(4) | Nomal supreme コート(0) | Nomalフェルマーの最終定理の簡単な証明7(101) | Nomal目的の形への行列の三角化(2) | Nomal(削除)(2) | Nomal等角写像の問題です。(2) | Nomal掲示板について。(1) | Nomalフェルマーの定理 RSA暗号(1) | Nomalフェルマーの最終定理の簡単な証明6(101) | Nomalオイラーの公式(3) | Nomalグッチンコピー(0) | Nomal6次方程式(2) | Nomalベクトル解析 証明(0) | Nomal位相数学、位相空間(0) | Nomal実生活に活きる確率(0) | Nomalオイラーの公式 導関数の定義(2) | Nomalオイラーの公式(3) | Nomal2階常微分方程式 (1) | Nomalオイラーの公式(0) | Nomalフェルマーの最終定理の簡単な証明5(101) | Nomal数学について。(1) | Nomal順列(4) | Nomal線形代数(1) | Nomal整数問題(1) | Nomalフェルマーの最終定理の簡単な証明4(101) | Nomal大小の比較(7) | Nomalシミュレーションについて(1) | Nomal期待値(2) | Nomal数学について。(1) | Nomalフーリエ変換の求め方(1) | Nomalisometric matrix,p-ノルムについて(0) | Nomalフェルマーの最終定理の簡単な証明3(76) | Nomald(cos^2θ)/dθ=と置けるような相似の図を見つけたいです!(0) | Nomal1/ cos^2θの微分を画像の図を用いて解きたい!(0) | Nomalラグランジュの剰余項(1) | Nomallog2とマクローリン展開についての証明(1) | Nomal極限を求める(大学数学)(1) | Nomal三角方程式(2) | Nomal確率密度(2) | Nomal方程式(2) | Nomal多項式の係数(1) | Nomalフェルマーの最終定理の簡単な証明2(101) | Nomal複素平面上の領域について(0) | Nomal数学検定について。(0) | Nomal複素解析(2) | Nomal定積分と体積(1) | Nomal極限値(3) | Nomal複素解析(7) | Nomalフェルマーの最終定理の簡単な証明(101) | Nomal高校推論の問題(1) | Nomal漸化式の項を減らす(4) | Nomalカーリングの7試合とは(4) | Nomal(削除)(3) | Nomalたぶん三角関数の等式(6) | Nomal確率、期待値の計算(0) | Nomal数学オリンピックの幾何の問題(2) | Nomal確率について。(1) | Nomal自然数の方程式(2) | Nomal単調増加数列(2) | Nomal数学について。(1) | Nomal平面図形について。(2) | Nomal平面図形について。(1) | Nomal確率について。(4) | Nomal確率について。(1) | Nomal確率について。(4) | Nomal確率について。(2) | Nomal統計について。(4) | Nomal整数解(1) |



■記事リスト / ▼下のスレッド
■48398 / 親記事)  微分
□投稿者/ 質問者 一般人(1回)-(2017/12/23(Sat) 00:48:26)
    問:f(x)は微分可、f(-x)=f(x)+x、f'(1)=1、f(1)=0を満たしている。次の値を求めよ。
    (1)f'(-1)

    解1
    f'(-x)=(f(x)+x)'
    =f'(x)+1
    f'(-1)=f'(1)+1
    =2

    解2
    f'(-1)=lim[h→0](f(-1+h)-f(-1))/h
    =lim[h→0](f(1-h)+(1-h)-f(1)-1)/h
    =lim[h→0][(f(1-h)-f(1))/h-1}
    =f'(1)-1
    =0

    解1と2ではどちらが正しいのでしょうか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48399 / ResNo.1)  Re[1]: 微分
□投稿者/ らすかる 一般人(5回)-(2017/12/23(Sat) 02:54:36)
    どちらも間違っています。

    解1は1行目が誤りです。
    f(-x)=f(x)+x の両辺を微分すると
    f'(-x)・(-x)'=(f(x)+x)'
    ですから
    -f'(-x)=(f(x)+x)'=f'(x)+1
    となり
    f'(-x)=-f'(x)-1なので
    f'(-1)=-f'(1)-1=-2
    となります。

    解2は3行目から4行目への式変形が誤りです。
    lim[h→0]{(f(1-h)-f(1))/h-1}
    =lim[h→0]{(f(1+h)-f(1))/(-h)-1}
    =lim[h→0]{-(f(1+h)-f(1))/h-1}
    =-f'(1)-1
    =-2
    となります。

引用返信/返信 [メール受信/OFF]
■48400 / ResNo.2)  Re[2]: 微分
□投稿者/ 質問者 一般人(3回)-(2017/12/23(Sat) 10:18:13)
    とても納得しました。
    ありがとうございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48395 / 親記事)  √3 v.s. √-3
□投稿者/ そうだよな 一般人(1回)-(2017/12/21(Thu) 21:40:09)
    有理数係数の多項式f(x)とg(x)が存在して、
    √3=f(√-3)/g(√-3)
    となることはありますか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48396 / ResNo.1)  Re[1]: √3 v.s. √-3
□投稿者/ らすかる 一般人(4回)-(2017/12/21(Thu) 22:37:21)
    ありません。
    f((√3)i)=a+b(√3)i, g((√3)i)=c+d(√3)i (a,b,c,dは有理数)
    となりますが、(√3)(c+d(√3)i)=a+b(√3)iからa=b=c=d=0となり不適です。

引用返信/返信 [メール受信/OFF]
■48397 / ResNo.2)  Re[2]: √3 v.s. √-3
□投稿者/ そうだよな 一般人(2回)-(2017/12/22(Fri) 08:37:14)
    なるほど
    有難うございます。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48394 / 親記事)  多項式の解と係数
□投稿者/ ネットで見かけた問題 一般人(1回)-(2017/12/21(Thu) 19:44:33)
    教えて下さい。

    f(x)は係数がすべて整数であるような多項式で、恒等的には0でないとする。
    f(1)=0かつf(3)=0であるならば、f(x)の係数のうちに、-3以下のものがあることを証明せよ。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48389 / 親記事)  有理数と整数
□投稿者/ 依存症 一般人(1回)-(2017/12/18(Mon) 23:15:20)
    a,b,c は相異なる有理数で a+b+c=0 をみたしている。
    (a/b)^2 + (b/c)^2 + (c/a)^2 が整数であるとき、
    a/b + b/c + c/a が整数であることを示せ。

    教えて下さい。よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48391 / ResNo.1)  Re[1]: 有理数と整数
□投稿者/ らすかる 一般人(3回)-(2017/12/19(Tue) 00:03:25)
    (a/b+b/c+c/a)^2
    =(a/b)^2+(b/c)^2+(c/a)^2+2(c/b+a/c+b/a)
    =(a/b)^2+(b/c)^2+(c/a)^2+2(-(a+b)/b-(b+c)/c-(c+a)/a)
    =(a/b)^2+(b/c)^2+(c/a)^2-2((a+b)/b+(b+c)/c+(c+a)/a)
    =(a/b)^2+(b/c)^2+(c/a)^2-2(a/b+b/c+c/a+3)
    なので
    (a/b)^2+(b/c)^2+(c/a)^2
    =(a/b+b/c+c/a)^2+2(a/b+b/c+c/a+3)
    ={(a/b+b/c+c/a)+1}^2+5
    もしa/b+b/c+c/aが整数でないとすると、
    条件からa/b+b/c+c/aは有理数なので
    (a/b+b/c+c/a)+1も整数でない有理数、
    {(a/b+b/c+c/a)+1}^2+5も整数でない有理数。
    従って問題の対偶の
    「a/b+b/c+c/aが整数でない」⇒「(a/b)^2+(b/c)^2+(c/a)^2が整数でない」
    が成り立つ。

引用返信/返信 [メール受信/OFF]
■48392 / ResNo.2)  Re[2]: 有理数と整数
□投稿者/ 依存症 一般人(2回)-(2017/12/19(Tue) 07:26:52)
    大変よく分かりました。
    有難うございます。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▲上のスレッド
■48387 / 親記事)  曲線の長さ
□投稿者/ 高2男 一般人(1回)-(2017/12/14(Thu) 13:58:45)
    次の曲線の周りの長さを求める問題が分かりません。
    公式通りやっていくと計算が泥沼にはまってしまいます。

    5*y^2 = x*(x-1)^2
    (0 < x < 1)

    どなたか、解法が思いつく(良い置換方法など)方はいらっしゃいますか?
引用返信/返信 [メール受信/ON]

▽[全レス1件(ResNo.1-1 表示)]
■48390 / ResNo.1)  Re[1]: 曲線の長さ
□投稿者/ l 一般人(1回)-(2017/12/19(Tue) 00:00:10)
    No48387に返信(高2男さんの記事)
    > 次の曲線の周りの長さを求める問題が分かりません。
    > 公式通りやっていくと計算が泥沼にはまってしまいます。
    >
    > 5*y^2 = x*(x-1)^2
    > (0 < x < 1)
    >
    > どなたか、解法が思いつく(良い置換方法など)方はいらっしゃいますか?
    曲線の長さ

    x∈[0,1] ですか.
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター