数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■52511 / 親記事)  無限和
  
□投稿者/ エクセルシオール 一般人(5回)-(2024/04/23(Tue) 21:13:32)
    数列a[n]=n(3n+1) (n=1,2,3…)に対して、無限和Σ[n=1,∞]1/a[n]の値を求めよ。

    という問題なのですが、区分求積法を使うのかもしれませんが、
    どの様に変形すれば良いのか分かりません。

    解法を教えてください。よろしくお願いいたします。
引用返信/返信 [メール受信/OFF] 削除キー/
■52512 / ResNo.1)  Re[1]: 無限和
□投稿者/ らすかる 一般人(8回)-(2024/04/24(Wed) 01:29:09)
    -log(1-x)=x+x^2/2+x^3/3+x^4/4+…
    から
    -xlog(1-x)=x^2+x^3/2+x^4/3+x^5/4+…
    a=(-1+i√3)/2
    b=(-1-i√3)/2
    とおくと
    a^1=a, a^2=b, a^3=1, a^4=a, a^5=b, a^6=1, …
    b^1=b, b^2=a, b^3=1, b^4=b, b^5=a, b^6=1, …
    なので
    -alog(1-a)=b+1/2+a/3+b/4+1/5+a/6+b/7+…
    -blog(1-b)=a+1/2+b/3+a/4+1/5+b/6+a/7+…
    2式の差をとり
    {-alog(1-a)+blog(1-b)}
    =(b-a)+(a-b)/3+(b-a)/4+(a-b)/6+(b-a)/7+…
    =(a-b)(-1+1/3-1/4+1/6-1/7+…)
    ∴-1+1/3-1/4+1/6-1/7+…={-alog(1-a)+blog(1-b)}/(a-b)
    ={{(1-i√3)/2}log((3-i√3)/2)-{(1+i√3)/2}log((3+i√3)/2)}/{(-1+i√3)/2-(-1-i√3)/2}
    ={{(1-i√3)/2}(log3/2-iπ/6)-{(1+i√3)/2}(log3/2+iπ/6)}/(i√3)
    ={{(1-i√3)/2-(1+i√3)/2}(log3/2)-{(1-i√3)/2+(1+i√3)/2}(iπ/6)}/(i√3)
    ={-(i√3)(log3/2)-(iπ/6)}/(i√3)
    =-log3/2-π/(6√3)
    従って
    (与式)=3{1-log3/2-π/(6√3)}=3-3log3/2-π/(2√3)

引用返信/返信 [メール受信/OFF] 削除キー/
■52513 / ResNo.2)  Re[1]: 無限和
□投稿者/ WIZ 一般人(2回)-(2024/04/24(Wed) 11:25:27)
    別解

    区分求積ではないですが定積分の計算に帰着させることはできます。

    部分分数に分解すると、
    1/a[n] = 3/{(3n)(3n+1)} = 3{1/(3n)-1/(3n+1)}

    ここで、mを自然数として
    ∫[0, 1]{x^m}dx = [(x^(m+1))/(m+1)]_[0, 1] = 1/(m+1)
    ですから、nを自然数として
    1/(3n) = ∫[0, 1]{x^(3n-1)}dx
    1/(3n+1) = ∫[0, 1]{x^(3n)}dx

    よって、
    (1/3)Σ[n=1, ∞]{1/a[n]}
    = Σ[n=1, ∞]{1/(3n)-1/(3n+1)}
    = Σ[n=1, ∞]{∫[0, 1]{x^(3n-1)-x^(3n)}dx}
    = ∫[0, 1]{Σ[n=1, ∞]{x^(3n-1)-x^(3n)}}dx
    = ∫[0, 1]{Σ[n=1, ∞]{(x^2-x^3)(x^(3(n-1)))}}dx

    上記で、少し強引ですが積分範囲を[0, 1-0]と見なせば、0 ≦ x < 1となり、
    n→∞のときx^(3n)→0となるので、等比級数の値は、
    Σ[n=1, ∞]{(x^2-x^3)(x^(3(n-1)))}
    = lim[n→∞]{(x^2-x^3)(1-x^(3n))/(1-x^3)}
    = (x^2-x^3){1/(1-x^3)}
    = (x^2)/(1+x+x^2)

    以上から、
    (1/3)Σ[n=1, ∞]{1/a[n]}
    = ∫[0, 1]{(x^2)/(1+x+x^2)}dx
    = ∫[0, 1]{(x^2+x+1-x-1)/(1+x+x^2)}dx
    = ∫[0, 1]{1-(x+1)/(1+x+x^2)}dx
    = [x]_[0, 1]-∫[0, 1]{(1/2)(2x+2)/(1+x+x^2)}dx
    = -∫[0, 1]{(1/2)(2x+1)/(1+x+x^2)+(1/2)/(1+x+x^2)}dx
    = 1-(1/2)[log(1+x+x^2)]_[0, 1]+(1/2)∫[0, 1]{1/(1+x+x^2)}dx
    = 1-(1/2)log(3)+(1/2)∫[0, 1]{1/(1+x+x^2)}dx

    上記最後の積分で、t = (2/√3)(x+1/2)とおくと、dt = (2/√3)dx, tの積分範囲は[1/√3, √3]です。
    ∫[0, 1]{1/(1+x+x^2)}dx
    = ∫[1/√3, √3]{1/(3/4+(3/4)t^2)}((√3)/2)dt
    = (2/√3)[arctan(t)]_[1/√3, √3]
    = (2/√3)(π/3-π/6)
    = π/(3√3)

    纏めると、
    Σ[n=1, ∞]{1/a[n]}
    = 3{1-(1/2)log(3)+(1/2)π/(3√3)}
    = 3-(3/2)log(3)+π/(2√3)

    # らすかるさん及びWolfram Alphaの結果と一致してめでたしめでたし!
引用返信/返信 [メール受信/OFF] 削除キー/
■52514 / ResNo.3)  Re[1]: 無限和
□投稿者/ エクセルシオール 一般人(6回)-(2024/04/24(Wed) 22:16:41)
    らすかるさんとWIZさん、回答ありがとうございます。
    お二人の式変形とても複雑で、どうしてそのような解法を思い付けたのか驚異です。

    以前質問させて頂いたときも、らすかるさんに回答で、その解法に至ったのは
    見覚えがあった式から置き換えを推論したと仰っていました。

    もし、よろしければお二人の解法に至った経緯などをアドバイスして頂ければと思います。
    よろしくお願いいたします。
引用返信/返信 [メール受信/OFF] 削除キー/
■52515 / ResNo.4)  Re[2]: 無限和
□投稿者/ らすかる 一般人(9回)-(2024/04/24(Wed) 22:45:25)
    私の解法は、1,1/2,1/3,…から適当な項を除いて足したり引いたりする
    無限級数の和の求め方のメモがありますので、その中で
    使えそうなものを探し、方法を真似て計算しました。
    ちなみに参考にしたものは
    1+1/2-1/4-1/5+1/7+1/8-1/10-1/11+…=2π/(3√3)
    という式の求め方です。
    (この場合はa=(1+i√3)/2, b=(1-i√3)/2とおけば求まります)
引用返信/返信 [メール受信/OFF] 削除キー/
■52516 / ResNo.5)  Re[1]: 無限和
□投稿者/ WIZ 一般人(3回)-(2024/04/25(Thu) 13:41:48)
    私のはライプニッツ級数の値を求める方法の1つを応用しました。
    Σ[k=0, ∞]{((-1)^k)/(2k+1)}
    = Σ[k=0, ∞]{((-1)^k)∫[0, 1]{x^k}dx}
    = ∫[0, 1]{1/(1+x^2)}dx
    です。詳細はネットで調べてれば色々出てきます。

    分子が等比数列で、分母が等差数列を成すような分数の無限和なら応用できるかもしれませんね。
引用返信/返信 [メール受信/OFF] 削除キー/
■52517 / ResNo.6)  Re[1]: 無限和
□投稿者/ エクセルシオール 一般人(7回)-(2024/04/25(Thu) 21:47:31)
    らすかるさんとWIZさん、再びありがとうございます。

    実はらすかるさんの解法を見て最初は何を計算しているのか理解できなかったのですが、
    WIZさんの解法で部分分数に分解というのを見て何となく分かった気がしてきました。
    お二人ともΣ[n=1,∞]1/a[n]=3Σ[n=1,∞]1/(3n)-1/(3n+1)として計算されているのですね。

    対数関数で複素数を使ったり、極限を用いた積分などまだまだ勉強が必要ですが、
    お二人とも説明して頂きありがとうございました。
解決済み!
引用返信/返信 [メール受信/OFF] 削除キー/
■52520 / ResNo.7)  Re[2]: 無限和
□投稿者/ らすかる 一般人(10回)-(2024/04/27(Sat) 03:53:23)
    あ、ごめんなさい。
    手元に用意した回答では問題の式から
    -1+1/3-1/4+1/6-…
    を導出するまでも書いていたのですが、
    それをコピペするときに途中からコピペしてしまい、
    とてもわかりにくい回答になってしまいました。
引用返信/返信 [メール受信/OFF] 削除キー/



スレッド内ページ移動 / << 0 >>

このスレッドに書きこむ

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター