数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalフェルマーの最終定理の簡単な証明9(25) | Nomal円を30度回転させた場合の結果が見たい。(17) | Nomal確率における情報(17) | Nomalプログラミング言語BASIC言語について。(14) | Nomal期待値(13) | Nomal論理を教えて下さい(12) | Nomal円錐台の断面積(9) | Nomal二次不等式(9) | Nomalガウス整数の平方和(8) | Nomal二項定理(8) | Nomal命題の真偽(8) | Nomal無限等比数列と微分の問題です。(7) | Nomal3の個数(7) | Nomal整数解(7) | Nomal複素数平面(6) | Nomal過去ログ記事を読んでいて(6) | Nomal水かさの問題です(中学受験)(6) | Nomal部分分数分解(6) | Nomal素数(6) | Nomal順列組合せ〜区別するものしないもの(6) | Nomal三角形の辺の長さ(6) | Nomal極形式(6) | Nomalフェルマーの最終定理の証明(6) | Nomal複数の点によって構成される多角形を相互の距離情報から類推する方法(6) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal積と和が一致する自然数の組(5) | Nomal複素数の関数(5) | Nomal素数積の評価〜ベルトラン・チェビシェフの定理(5) | Nomal群の問題(5) | Nomal不等式(4) | Nomal係数(4) | Nomal整数の例(4) | Nomal式の値(4) | Nomal高校受験の問題です(4) | Nomalおすすめの本(4) | Nomal二重積分(4) | Nomal多項式(4) | Nomal確率(4) | Nomal大学数学統計学の問題(4) | Nomal複素数(4) | Nomal必要十分条件(4) | Nomal導関数(4) | NomalLambert W関数を用いた数式(4) | Nomal論理式(4) | Nomal放物線の標準形(4) | Nomallog(1+x)<√x(4) | Nomal円と3次関数(4) | Nomal因数分解(4) | Nomalカタラン数(4) | Nomal複素関数の部分分数分解(4) | Nomal全ての 整数解 等(4) | Nomal正射影再び(笑)(4) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal極大と変曲(4) | Nomalsinの不等式(4) | Nomal合同式の計算(4) | Nomallogの計算(3) | Nomal極限(3) | Nomalこれだけで求められるの?(3) | Nomal二次方程式の定数を求める(3) | Nomal数学はゲーム(3) | Nomal複素数(3) | Nomal積分(3) | Nomal素数(3) | Nomal不等式(3) | Nomal数列の極限(3) | Nomal積分の応用(3) | Nomal複素数の問題(3) | Nomal辺の和の最小値(3) | Nomal角度(3) | Nomal必要十分条件(3) | Nomal三角関数(3) | Nomalベクトルの大きさ(3) | Nomal和の求め方がわかりません。(3) | Nomal極限(3) | Nomal三角形の角(3) | Nomalコラッツ予想について(3) | Nomalフィボナッチ数列について。(3) | Nomal円と曲線(3) | NomalΣと積分の交換(3) | Nomal2次方程式(3) | Nomal(削除)(3) | Nomal連立方程式(3) | Nomalピタゴラスの定理の簡単な証明(3) | Nomalリーマン積分可能性(3) | Nomal統計/区画幅について(3) | Nomal統計学についての質問(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal囲まれた面積(2) | Nomal複素数(2) | Nomal確率(2) | Nomal低レベルな問題ですいません(2) | Nomal環でしょうか(2) | Nomal速度(2) | Nomali^iについて(2) | Nomal円に内接する四角形(2) | Nomal場合の数(2) | Nomal質問(2) | Nomal不等式(2) | Nomal確立 基礎問題(2) | Nomal不等式(2) |



■記事リスト / ▼下のスレッド
■50214 / 親記事)  フェルマーの最終定理の簡単な証明9
□投稿者/ 日高 一般人(3回)-(2020/02/12(Wed) 09:22:33)
    ご指摘おねがいします。
1240×1754 => 177×250

1581466953.png
/26KB
引用返信/返信 [メール受信/OFF]

▽[全レス25件(ResNo.21-25 表示)]
■50412 / ResNo.21)  Re[18]: フェルマーの最終定理の簡単な証明9
□投稿者/ 日高 一般人(9回)-(2020/07/16(Thu) 08:18:52)
    【定理】pが奇素数のとき、x^p+y^p=z^pは、整数比の解を持たない。
    【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
    (1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
    (2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
    (3)はrが無理数なので、yが有理数のとき、x,y,zは整数比とならない。
    (2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
    (4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
    (5)の解は(3)の解のa^{1/(p-1)}倍となるので、rが有理数のときの解は整数比とならない。
    ∴pが奇素数のとき、x^p+y^p=z^pは、整数比の解を持たない。
引用返信/返信 [メール受信/OFF]
■50413 / ResNo.22)  Re[19]: フェルマーの最終定理の簡単な証明9
□投稿者/ 日高 一般人(10回)-(2020/07/16(Thu) 08:20:37)
    【定理】p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
    【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
    (1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
    (2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
    (3)はrが有理数なので、yが有理数のとき、x,y,zは整数比となる。
    (2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
    (4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
    (5)の解は(3)の解のa倍となるので、rが有理数のときの解は、整数比となる。
    ∴p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
引用返信/返信 [メール受信/OFF]
■50414 / ResNo.23)  Re[20]: フェルマーの最終定理の簡単な証明9
□投稿者/ 屁留真亜 一般人(6回)-(2020/07/16(Thu) 23:13:37)
     ここは数学の質問するための掲示板です。数学漫才や数学落語のネタを議論したいのであれば、あなたのホームグラウンドである

    ttps://rio2016.5ch.net/test/read.cgi/math/1569999945/

    へお帰りください。以降屑のような投稿はお控えください。

     暇を持て余しているのなら、今回の大雨で大災害を被った地域でボランティアでもしてください。
引用返信/返信 [メール受信/OFF]
■50422 / ResNo.24)  Re[10]: フェルマーの最終定理の簡単な証明9
□投稿者/ 日高 一般人(11回)-(2020/08/03(Mon) 11:24:47)
    (修正6)
    【定理】p=3のとき、x^p+y^p=z^pは、自然数解を持たない。
    【証明】x^3+y^3=z^3を、z=x+rとおいてx^3+y^3=(x+r)^3…(1)とする。
    (1)は積の形にすると、r^2{(y/r)^3-1}=a3{x^(p-1)+x}(1/a)…(2)となる。
    (2)はa=1、r^2=3のとき、x^3+y^3=(x+3^{1/2})^3…(3)となる。
    (2)はa=1以外、r^2=a3のとき、x^3+y^3=(x+(a3)^{1/2})^3…(4)となる。
    (3)はrが無理数なので、有理数解を持たない。
    (4)はrが自然数のとき、(4)の解は、(3)の解のa^{1/2}倍となるので、有理数解を持たない。
    ∴p=3のとき、x^p+y^p=z^pは、自然数解を持たない。
引用返信/返信 [メール受信/OFF]
■50423 / ResNo.25)  Re[11]: フェルマーの最終定理の簡単な証明9
□投稿者/ 日高 一般人(12回)-(2020/08/03(Mon) 16:05:38)
    (修正6)
    【定理】p=2のとき、x^p+y^p=z^pは、自然数解を持つ。
    【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
    (1)は積の形にすると、r{(y/r)^2-1}=a2x(1/a)…(2)となる。
    (2)はa=1、r=2のとき、x^2+y^2=(x+2)^3…(3)となる。
    (2)はa=1以外、r^2=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
    (3)はrが有理数なので、有理数解を持つ。
    (4)はrが自然数のとき、(4)の解は、(3)の解のa倍となるので、自然数解を持つ。
    ∴p=3のとき、x^p+y^p=z^pは、自然数解を持つ。

    (2)はa=1、r=2のとき、x^2+y^2=(x+2)^3…(3)となる。
    y=10/3を代入すると、x=16/9、z=34/9
    (2)はa=1以外、r^2=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
    (4)はrが自然数のとき、(4)の解は、(3)の解のa倍となるので、自然数解を持つ。
    a2=9のとき、a=9/2
    (16/9*9/2)^2+(10/3*9/2)^2=(16/9*9/2+9)^2
    8^2+15^2=17^2

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-9] [10-19] [20-25]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■51997 / 親記事)  円を30度回転させた場合の結果が見たい。
□投稿者/ えっぴ〜 一般人(1回)-(2022/10/25(Tue) 21:00:06)
    円の公式は原点の場合、x^2+y^2=0です。
    原点ではない場合、(x−a)2+(y−b)2=r2です。
    円の例えば、x^2+(y-3000)^2+3000^2の円があって、
    それを30度回転させた場合、どのような結果になりますか。
    途中式も併せてお答えください。
1152×783 => 250×169

1666699206.png
/9KB
引用返信/返信 [メール受信/OFF]

▽[全レス17件(ResNo.13-17 表示)]
■52011 / ResNo.13)  Re[13]: 円を30度回転させた場合の結果が見たい。
□投稿者/ えっぴ〜 一般人(9回)-(2022/10/27(Thu) 07:01:21)
    (0,a)を中心として(0,0)を左にb°回転した場合、x値はどのように変動するかです。
    変数でお答えください。
1152×783 => 250×169

1666821681.png
/9KB
引用返信/返信 [メール受信/OFF]
■52012 / ResNo.14)  Re[14]: 円を30度回転させた場合の結果が見たい。
□投稿者/ らすかる 一般人(16回)-(2022/10/27(Thu) 07:08:05)
    「x値」とは何のことですか?

    # 値がaやbなどの変数で与えられれば必然的に変数で答えるしかありませんので、
    # 「変数でお答えください」という要望は書かなくて大丈夫です。
引用返信/返信 [メール受信/OFF]
■52013 / ResNo.15)  Re[15]: 円を30度回転させた場合の結果が見たい。
□投稿者/ えっぴ〜 一般人(10回)-(2022/10/27(Thu) 07:11:19)
    (0,a)を中心として(0,0)を左にb°回転した場合、x値はどのように変動するかです。
    変数でお答えください。→訂正、x値→x座標のことです。

引用返信/返信 [メール受信/OFF]
■52014 / ResNo.16)  Re[16]: 円を30度回転させた場合の結果が見たい。
□投稿者/ らすかる 一般人(17回)-(2022/10/27(Thu) 07:24:29)
    (0,0)を回転した後のx座標を聞いているのですか?
    それであれば既に52008で
    > (0,a)を中心として(0,0)を左にb°回転すると(a×sin(b°),a-a×cos(b°))に移る
    と回答したように、移動先の点の
    x座標は a×sin(b°)
    y座標は a-a×cos(b°)
    となります。
引用返信/返信 [メール受信/OFF]
■52015 / ResNo.17)  Re[17]: 円を30度回転させた場合の結果が見たい。
□投稿者/ えっぴ〜 一般人(11回)-(2022/10/27(Thu) 09:21:52)
    ありがとうございます。
    傾きをy=ax+bといった具合に、数値を文字であらわすことを変数というのですネ。
    勉強になりました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-9] [10-17]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50288 / 親記事)  確率における情報
□投稿者/ 小池百合コロナ 一般人(1回)-(2020/04/14(Tue) 15:55:50)
    以下の問題を素直に解くとどのようになるか教えてほしいのです。
    よろしくお願いします。

    投げたり落としたりすると1/6の確率で割れる皿が何枚かある。
    百合子がその皿を両手に一枚ずつ持って遠くに投げたら、
    一枚は空を飛んでいたカラスに当たって落ちて割れてしまった。
    もう一枚は百合子からは見えないし割れたような音も聞こえないほど遠くに投げられたため、百合子は皿の状態が確認できない。

    (1) 遠くに投げられた皿も割れている確率はいくらか。
    (つまり、百合子が投げた皿が2枚とも割れている確率はいくらか。)

    後日、百合子は崖へ行き、両手に一枚ずつ持っている皿を崖から落とした。
    下のほうの様子を目で確認することは出来ないが、ガチャンと皿が割れる音がするのを百合子は聞いた。
    少なくとも一枚の皿は割れていると百合子は確信した。

    (2) 百合子が落とした皿が2枚とも割れている確率はいくらか。
引用返信/返信 [メール受信/OFF]

▽[全レス17件(ResNo.13-17 表示)]
■50306 / ResNo.13)  Re[13]: 確率における情報
□投稿者/ 小池百合コロナ 一般人(9回)-(2020/04/15(Wed) 16:36:21)
    有難うございます。

    つまり、以下の3つの問題は、本質的に同じことを問うていると
    考えていいということでしょうか?
    1.
    投げたり落としたりすると1/6の確率で割れる皿が何枚かある。
    百合子がその皿を両手に一枚ずつ持って同時に遠くに投げたら、
    一枚は空を飛んでいたカラスに当たって落ちて割れてしまった。
    カラスは2枚の皿から無作為にどちらかの皿を選び当たるものとする。
    もう一枚は百合子からは見えないし割れたような音も聞こえないほど遠くに投げられたため、百合子は皿の状態が確認できない。
    遠くに投げられた皿も割れている確率はいくらか。
    2.
    部屋の中に人Aと人Bが居て、大小2つのサイコロがある。
    AとBの間にはついたてがある。
    Aがサイコロを2個振る。(目はBには見えない)
    Aは2個のサイコロのうち、1個のサイコロの値をBに言う。
    Aはどちらのサイコロを選んで値を言うかは無作為に決める。
    Bの聞いた値が1であったとき、もう一つのサイコロも1が出ている確率はいくらか。
    3.
    部屋の中に人Aと人Bが居て、大小2つのサイコロがある。
    AとBの間にはついたてがある。
    Aがサイコロを2個振る。(目はBには見えない)
    Aは2個のサイコロのうち、1個のサイコロの値をBに言う。
    Bの聞いた値が1であったとき、もう一つのサイコロも1が出ている確率はいくらか。
引用返信/返信 [メール受信/OFF]
■50307 / ResNo.14)  Re[14]: 確率における情報
□投稿者/ らすかる 一般人(22回)-(2020/04/15(Wed) 16:38:40)
    はい、同じことです。
引用返信/返信 [メール受信/OFF]
■50308 / ResNo.15)  Re[15]: 確率における情報
□投稿者/ 小池百合コロナ 一般人(10回)-(2020/04/15(Wed) 17:50:21)
    有難うございます。本当に丁寧に教えていただいて感謝しております。

    1. 2. 3. は
    「どちらかの目が1とわかったが、他のサイコロの目も1である確率」
    である、ということでしょうか?

    そして
    「どちらかの目が1とわかったが、他のサイコロの目も1である確率」と
    「どちらかの目が1とわかった場合に他のサイコロの目も1である確率」
    は異なるということでしょうか?


    ■50295のただのぞろ目の問題は、
    >確率は聞いた目の値と関係なく1/6です。
    とのことなので、
    >「どちらかの目がわかった場合に他のサイコロの目も同じ値である確率」
    というよりもむしろ、
    「どちらかの目がわかったが、他のサイコロの目も同じ値である確率」
    なのでしょうか?
引用返信/返信 [メール受信/OFF]
■50309 / ResNo.16)  Re[16]: 確率における情報
□投稿者/ らすかる 一般人(23回)-(2020/04/15(Wed) 18:18:18)
    > 1. 2. 3. は
    > 「どちらかの目が1とわかったが、他のサイコロの目も1である確率」
    > である、ということでしょうか?

    違います。その言い回しにすると意味が変わってしまいます。
    「一つのサイコロを無作為に選んだときにその目が1だったが、
     他のサイコロの目も1である確率」と言わないと正しく解釈されません。
    「どちらかの目が1とわかった」と書くと
    「二つのうち少なくとも一つは1であった」という意味に解釈されてしまいます。
    従って
    > そして
    > 「どちらかの目が1とわかったが、他のサイコロの目も1である確率」と
    > 「どちらかの目が1とわかった場合に他のサイコロの目も1である確率」
    > は異なるということでしょうか?
    この二つは同じです。

引用返信/返信 [メール受信/OFF]
■50310 / ResNo.17)  Re[17]: 確率における情報
□投稿者/ 小池百合コロナ 一般人(11回)-(2020/04/15(Wed) 21:10:14)
    ありがとうございました。
    頭の中が少しずつ整理されてきました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-9] [10-17]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50157 / 親記事)  プログラミング言語BASIC言語について。
□投稿者/ コルム 一般人(1回)-(2019/11/12(Tue) 19:57:06)
    数学Bで、BASIC言語が載っている数学Bの教科書や参考書があれば、写真を撮影していただけないでしょうか?で、ここに貼っていただけると幸いなのですが。すみません。教えていただけると幸いなのですが。
引用返信/返信 [メール受信/OFF]

▽[全レス14件(ResNo.10-14 表示)]
■50171 / ResNo.10)  Re[1]: プログラミング言語BASIC言語について。
□投稿者/ オブザーザー 一般人(1回)-(2019/11/13(Wed) 08:22:54)
    >数学Bで、BASIC言語が載っている数学Bの教科書や参考書があれば、写真を撮影していただけないでしょうか?
    これは表紙のことを言っているのか
    それとも中身のことなのか
    中身のことだとして何ページくらいのことなのか
    他人に伝わる文章にしなさい
引用返信/返信 [メール受信/OFF]
■50172 / ResNo.11)  Re[2]: プログラミング言語BASIC言語について。
□投稿者/ マルチポスト撲滅委員会 一般人(4回)-(2019/11/13(Wed) 08:57:46)
     まあ、いつものことだが、こいつホントにBASIC(それも古風な)をマスター
    する気があるのかね。
     提示したサイトを見たのか。それで INPUT すらわからなかったら、もう
    あきらめろwwwwwwwwwwwwwwwwwwwww

引用返信/返信 [メール受信/OFF]
■50173 / ResNo.12)  Re[2]: プログラミング言語BASIC言語について。
□投稿者/ コルム 一般人(5回)-(2019/11/13(Wed) 17:28:07)
    中身です。DEF文は、最後のところで、INPUT文は、ページの最初の部分のところです。教えていただけると幸いなのですが。すみません。
引用返信/返信 [メール受信/OFF]
■50175 / ResNo.13)  Re[3]: プログラミング言語BASIC言語について。
□投稿者/ マルチポスト撲滅委員会 一般人(6回)-(2019/11/13(Wed) 19:48:47)
    ホントにやる気あるのかね?

748×830 => 225×250

1573642127.jpg
/100KB
引用返信/返信 [メール受信/OFF]
■50176 / ResNo.14)  Re[4]: プログラミング言語BASIC言語について。
□投稿者/ コルム 一般人(6回)-(2019/11/13(Wed) 23:23:07)
    あります。今のは、何のプログラムですか?教えていただけると幸いなのですが。行番号が、全く異なりますが。教えていただけると幸いなのですが。すみません。
    elseも、elseif も、BASIC言語の数学Bの参考書に載っていたのですか。教えていただけると幸いなのですが。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-9] [10-14]



■記事リスト / ▲上のスレッド
■50719 / 親記事)  期待値
□投稿者/ ゴリラ 一般人(1回)-(2021/04/20(Tue) 14:32:17)
    点Pは時刻0で正四面体のある頂点に位置し、1秒ごとに位置している頂点にとどまるか、
    位置している頂点から他の3頂点のいずれかに動くかを、等しい確率で選択し実行する。
    このとき、時刻0から時刻nまでの間に、点Pが現れた異なる頂点の数の期待値を求めよ。
    ただしnは1以上の整数とする。

    この問題なのですが、期待値E[n]の漸化式を立てて解くことは出来ますか?
    E[n+1]をE[n]で表したいです。n+1秒を考えるときPの最初の動きで場合分けして
    時刻1にPが位置している頂点にとどまればその後はE[n]/4ですよね。
    時刻1にPが確率3/4で他の頂点にうつったときをE[n]で表せますか?

    よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス13件(ResNo.9-13 表示)]
■50728 / ResNo.9)  Re[9]: 期待値
□投稿者/ らすかる 一般人(37回)-(2021/04/21(Wed) 00:26:58)
    そうですね。
    どちらかというと、「私には難しい」と考えているのではなく、
    「この手のものは今までの経験から考えて「不可能」である可能性が高い」
    (つまりどんな数学者が考えてもできないと思われる)と考えています。
    ・bはE[n]と直接関係ありそうな値ではない
    ・E[n]とE[n-1]からも導ける気がしない
    ・E[1]〜E[n]を全部使えば導ける可能性はあるが、
    その式を作るのも困難な上に、作った漸化式も解ける気がしない
    ・よって、普通に考えて無理。

引用返信/返信 [メール受信/OFF]
■50729 / ResNo.10)  Re[10]: 期待値
□投稿者/ ゴリラ 一般人(7回)-(2021/04/21(Wed) 00:35:13)
    分かりました。有難うございます。
    
    他の解法に興味が移ってきました。
    こちらについても教えてください。
    
    時刻nまでにk(k=1,2,3,4)個の頂点に位置した確率をそれぞれp_1,p_2,p_3,p_4とします。
    求めたい期待値は
    p_1+2*p_2+3*p_3+4*p_4
    =
    p_1 +
    p_2 + p_2 +
    p_3 + p_3 + p_3 + 
    p_4 + p_4 + p_4 + p_4
    
    なので、4=4*(p_1+p_2+p_3+p_4)から
    
          p_1 + p_1 + p_1
              + p_2 + p_2
                    + p_3
    
    を引けばいいわけですよね?
    これって簡単に計算できますか?
    
    横ではなく縦に足すと
    p_1 + p_2 + p_3 = 3頂点 "以下" に位置した確率
    p_1 + p_2       = 2頂点 "以下" に位置した確率
    などとなって、うまく計算できるような気もするのですが…わかりませんでした。
    最終的な答えとすり合わせると、この値が大変簡明な姿になることは分かっているのですが、
    どうすればそうなるのか思いつかなくてもやもやです。

引用返信/返信 [メール受信/OFF]
■50730 / ResNo.11)  Re[11]: 期待値
□投稿者/ らすかる 一般人(38回)-(2021/04/21(Wed) 02:41:40)
    時刻nまでに1頂点(以下)に位置した確率は、
    時刻nまで動かない確率なので(1/4)^nです。
    時刻nまでに2頂点以下に位置した確率は、
    正四面体OABC(時刻0でPがいる頂点がO)において
    AにもBにも行かない確率は(1/2)^n
    BにもCにも行かない確率は(1/2)^n
    CにもAにも行かない確率は(1/2)^n
    この3つを足すと「Oから移動しない確率」が3回足されて
    重複してしまいますので、その分を引けば
    2頂点以下に位置した確率は3・(1/2)^n-2・(1/4)^n
    と計算されます。
    時刻nまでに3頂点以下に位置した確率は、
    Aに行かない確率は(3/4)^n
    Bに行かない確率は(3/4)^n
    Cに行かない確率は(3/4)^n
    これを足すと「2頂点以下」3通りがそれぞれ2重複しますのでそれを引いて
    引きすぎた1頂点の確率を足すことにより
    3・(3/4)^n-3・(1/2)^n+(1/4)^n
    と計算されます。
    よって「1頂点」+「2頂点以下」+「3頂点以下」
    ={(1/4)^n}+{3・(1/2)^n-2・(1/4)^n}+{3・(3/4)^n-3・(1/2)^n+(1/4)^n}
    =3・(3/4)^n
    となります。

    しかし上記の計算は重複分の考慮がやや難しい(混乱しやすい)ので、
    以下のように("以下"にせずに)具体的に考えた方が確実のような気がします。
    時刻nまでに
    Oのみ (1/4)^n
    OとA (1/2)^n-(1/4)^n
    OとB、OとCも同じ
    OとAとB (3/4)^n-2{(1/2)^n-(1/4)^n}-(1/4)^n=(3/4)^n-2(1/2)^n+(1/4)^n
    OとBとC、OとCとAも同じ
    よって期待値は
    4-3・(1/4)^n-2・3{(1/2)^n-(1/4)^n}-1・3{(3/4)^n-2(1/2)^n+(1/4)^n}
    =4-3(3/4)^n

引用返信/返信 [メール受信/OFF]
■50731 / ResNo.12)  Re[12]: 期待値
□投稿者/ name 一般人(1回)-(2021/04/21(Wed) 14:13:59)



引用返信/返信 [メール受信/OFF]
■50736 / ResNo.13)  Re[12]: 期待値
□投稿者/ ゴリラ 一般人(8回)-(2021/04/21(Wed) 20:19:11)
    3^(n+1)/4^nがすっきりしているので期待してしまいました。
    ありがとうございました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-9] [10-13]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター