数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
UpDateフェルマーの最終定理の簡単な証明7(21) | Nomalフェルマーの定理 RSA暗号(1) | Nomal等角写像の問題です。(1) | Nomal弊店は主にヴェトモン(0) | Nomalフェルマーの最終定理の簡単な証明6(101) | Nomalブ ランドスーパー コピー(0) | Nomalオイラーの公式(3) | Nomalグッチンコピー(0) | Nomal6次方程式(2) | Nomalベクトル解析 証明(0) | Nomal位相数学、位相空間(0) | Nomal実生活に活きる確率(0) | Nomalオイラーの公式 導関数の定義(2) | Nomalオイラーの公式(3) | Nomal2階常微分方程式 (1) | Nomalオイラーの公式(0) | Nomalフェルマーの最終定理の簡単な証明5(101) | Nomal数学について。(1) | Nomal順列(4) | Nomal線形代数(1) | Nomal整数問題(1) | Nomalフェルマーの最終定理の簡単な証明4(101) | Nomal大小の比較(7) | Nomalシミュレーションについて(1) | Nomal期待値(2) | Nomal数学について。(1) | Nomalフーリエ変換の求め方(1) | Nomalisometric matrix,p-ノルムについて(0) | Nomalフェルマーの最終定理の簡単な証明3(76) | Nomald(cos^2θ)/dθ=と置けるような相似の図を見つけたいです!(0) | Nomal1/ cos^2θの微分を画像の図を用いて解きたい!(0) | Nomalラグランジュの剰余項(1) | Nomallog2とマクローリン展開についての証明(1) | Nomal極限を求める(大学数学)(1) | Nomal三角方程式(2) | Nomal確率密度(2) | Nomal方程式(2) | Nomal多項式の係数(1) | Nomalフェルマーの最終定理の簡単な証明2(101) | Nomal複素平面上の領域について(0) | Nomal数学検定について。(0) | Nomal複素解析(2) | Nomal定積分と体積(1) | Nomal極限値(3) | Nomal複素解析(7) | Nomal韓国 supreme(0) | Nomalフェルマーの最終定理の簡単な証明(101) | Nomal高校推論の問題(1) | Nomal漸化式の項を減らす(4) | Nomalカーリングの7試合とは(4) | Nomal(削除)(3) | Nomalたぶん三角関数の等式(6) | Nomal確率、期待値の計算(0) | Nomal数学オリンピックの幾何の問題(2) | Nomal確率について。(1) | Nomal自然数の方程式(2) | Nomal単調増加数列(2) | Nomal数学について。(1) | Nomal平面図形について。(2) | Nomal平面図形について。(1) | Nomal確率について。(4) | Nomal確率について。(1) | Nomal確率について。(4) | Nomal コピー - KEEVOO (0) | Nomal確率について。(2) | Nomal統計について。(4) | Nomal整数解(1) | Nomal静岡大学数学について。(1) | Nomalベクトルについて。(1) | Nomalベクトルについて。(1) | Nomal確率(2) | Nomal箱ひげ図(2) | Nomal3次関数について。(1) | Nomalベクトルについて。(2) | Nomal【緊急】中2数学の証明(2) | Nomalε-N論法を使った極限の証明(1) | Nomal偏微分・重積分(1) | Nomal複素解析学 留数計算(1) | Nomal数列について。(1) | Nomal数列について。(1) | Nomal数Aについて。(1) | Nomal線積分の問題(1) | Nomalベクトルについて。(7) | Nomalベクトルについて。(1) | Nomalベクトルについて。(5) | Nomal数列について。(14) | Nomal出かける時に気を遣わずに使用できるショルダーバッグ(0) | Nomalベクトルについて。(3) | Nomal数列について。(2) | Nomal微分方程式の問題(3) | Nomalベクトルについて。(1) | Nomal整数について。(1) | Nomal有理数(2) | Nomal放物線と円(1) | Nomalベクトルについて。(16) | Nomal数列の極限(1) | Nomal確率(6) | Nomalたけしのコマ大数学科の問題・・・(3) | Nomal数列(2) | Nomal整数の個数と極限(5) |



■記事リスト / ▼下のスレッド
■48000 / 親記事)  互いに素
□投稿者/ on 一般人(1回)-(2017/06/01(Thu) 23:19:52)
    自然数mに対して、φ(m)を1以上m以下の自然数でmと互いに素なものの個数とするとき、
    2以上の自然数nに対して、2^n-1はφ(2^n-1)で割り切れないことの証明を教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48001 / ResNo.1)  Re[1]: 互いに素
□投稿者/ らすかる 一般人(11回)-(2017/06/02(Fri) 01:58:37)
    aが2^n-1と互いに素ならば(2^n-1)-aも2^n-1と互いに素
    aと(2^n-1)-aが一致することはないからφ(2^n-1)は偶数
    従って2^n-1はφ(2^n-1)では割り切れない。

引用返信/返信 [メール受信/OFF]
■48002 / ResNo.2)  Re[2]: 互いに素
□投稿者/ on 一般人(2回)-(2017/06/03(Sat) 09:48:43)
    有り難うございます!
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47996 / 親記事)  数列の最大項
□投稿者/ まるでお城 一般人(1回)-(2017/05/26(Fri) 16:38:08)
    aを正の数として、数列a[n]を
    a[n]=(a/n)^n (n=1,2,3,...)
    と定めます。
    a[1],a[2],a[3],...,a[n],...
    のうち最大の項はどれですか?
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■47997 / ResNo.1)  Re[1]: 数列の最大項
□投稿者/ WIZ 一般人(9回)-(2017/05/26(Fri) 20:09:22)
    logは自然対数関数を表すものとし、自然対数の底をeとします。

    xを実数として、f(x) = (a/x)^xとおいてx > 0でのf(x)の増減を調べます。
    f(x) > 0ですから、log(f(x)) = x(log(a)-log(x)),
    f'(x)/f(x) = log(a)-log(x)-1 = log(a/(ex)) ⇒ f'(x) = f(x)log(a/(ex))
    1 < a/(ex)つまりx < a/eで、f'(x) > 0なので、f(x)は増加。
    1 = a/(ex)つまりx = a/eで、f'(x) = 0なので、f(x)は極大。
    0 < a/(ex) < 1つまりa/e < xで、f'(x) < 0なので、f(x)は減少。

    よって、a/eに近い整数nでa[n]は最大になると考えられるので、
    n = [a/e]またはn = [a/e]+1のどちらかになると思います。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47985 / 親記事)  数列とmod
□投稿者/ トランク大統領 一般人(1回)-(2017/05/22(Mon) 00:03:38)
    a[1]=-4
    a[2]=8
    a[3]=420
    a[n+3]=3a[n+2]-99a[n+1]-31a[n] (n≧1)
    で定められる数列{a[n]}をmod 93で見ると、いずれも0にならない(93の倍数にならない)、
    という性質があります。

    この93という整数はどうやって見つけたらよいのでしょうか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■47991 / ResNo.1)  Re[1]: 数列とmod
□投稿者/ らすかる 一般人(10回)-(2017/05/22(Mon) 19:52:37)
    別スレで書いた「条件を満たす自然数mは存在しない」の証明と同様に考えれば、
    31a[n]=-99a[n+1]+3a[n+2]-a[n+3]
    と変形したとき、mod mのmが31と互いに素であればある3項からその手前の項が
    一意的に決まり、a[0]=0なのでa[k]≡0(mod m)となる項が存在します。
    従ってa[k]≡0(mod m)となる項が存在しないためには、少なくとも
    mが31と互いに素でない、すなわち31の倍数である必要があります。
    よって31,62,93,…を考えればよいことになりますね。

引用返信/返信 [メール受信/OFF]
■47994 / ResNo.2)  Re[2]: 数列とmod
□投稿者/ トランク 一般人(9回)-(2017/05/22(Mon) 23:28:59)
    有り難うございます。

    これは問題集にあった問題なのですが、
    解けるように作ってあることがよく分かりました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47982 / 親記事)  数列とmod
□投稿者/ トランク 一般人(1回)-(2017/05/21(Sun) 20:40:36)
    a[1]=1
    a[2]=-3
    a[3]=6
    a[n+3]=-3a[n+2]-3a[n+1]+a[n] (n≧1)
    で定められる数列{a[n]}について、次の条件をみたす自然数mは存在するでしょうか?

    条件 どの自然数nに対してもa[n]はmの倍数ではない
引用返信/返信 [メール受信/OFF]

▽[全レス7件(ResNo.3-7 表示)]
■47986 / ResNo.3)  Re[1]: 数列とmod
□投稿者/ らすかる 一般人(8回)-(2017/05/22(Mon) 01:08:33)
    全然答えにはなっていないですが、
    とりあえずm≦1000000では条件を満たすmは存在しませんでした。

引用返信/返信 [メール受信/OFF]
■47987 / ResNo.4)  Re[2]: 数列とmod
□投稿者/ トランク 一般人(3回)-(2017/05/22(Mon) 01:29:34)
    No47986に返信(らすかるさんの記事)
    > 全然答えにはなっていないですが、
    > とりあえずm≦1000000では条件を満たすmは存在しませんでした。
    >

    ひええぇぇ・・・
    この方針では無理そうですね
引用返信/返信 [メール受信/OFF]
■47989 / ResNo.5)  Re[2]: 数列とmod
□投稿者/ トランク 一般人(5回)-(2017/05/22(Mon) 03:25:21)
    でも、もし任意の自然数mに対して、ある自然数nが存在して
    a[n]はmの倍数
    となるのなら、それ自体でちょっと面白い問題ですね
    元の問題からは離れてしまいますが…
引用返信/返信 [メール受信/OFF]
■47990 / ResNo.6)  Re[1]: 数列とmod
□投稿者/ らすかる 一般人(9回)-(2017/05/22(Mon) 19:03:10)
    「条件を満たす自然数mは存在しない」が証明できました。

    mod mで考えた場合、連続する3項の数の組合せは
    有限通り(m^3通り)ですから、必ず一定の周期でループします。
    そしてa[n+3]=-3a[n+2]-3a[n+1]+a[n]を変形すると
    a[n]=3a[n+1]+3a[n+2]+a[n+3]となり、ある連続する3項から
    必ずその前の項も一意的に決まりますので、
    「先頭のk項(k>0)はループせず、k+1項めからループが始まる」
    ということはあり得ず、先頭からループが始まります。
    従ってa[k]≡a[1],a[k+1]≡a[2],a[k+3]≡a[3](mod m)となるkが
    必ず存在します。
    このとき、a[0]=3a[1]+3a[2]+a[3]=0からa[k-1]≡a[0]≡0(mod m)ですから、
    mの倍数である項a[k-1]が存在します。
    従って条件を満たす自然数mは存在しません。

引用返信/返信 [メール受信/OFF]
■47992 / ResNo.7)  Re[2]: 数列とmod
□投稿者/ トランク 一般人(6回)-(2017/05/22(Mon) 23:22:44)
    2017/05/22(Mon) 23:38:47 編集(投稿者)

    なるほど!
    a[n]の係数1がいやらしい、mが存在しない(≒元の問題が難しくなってる)原因なんですね。

    他の線型回帰数列でも(フィボナッチ数列とか)同様のことが言えるんですね。
    有り難うございます。(って、元の問題がますます手が届かなくなってるのではありますが…)
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-7]



■記事リスト / ▲上のスレッド
■47988 / 親記事)  2^(1/3)-1
□投稿者/ トランク 一般人(4回)-(2017/05/22(Mon) 02:22:41)
    自然数nに対して整数a[n],b[n],c[n]を
    (2^(1/3)-1)^n=a[n]+b[n]2^(1/3)+c[n]4^(1/3)
    として定めます。

    「n≧2ならばc[n]≠0」
    って正しいでしょうか?

    正しいとすると証明はどうすればよいのでしょうか?

    (他の場所で見かけて)なぜか少し気になりまして…。
    よろしくお願いします。
引用返信/返信 [メール受信/OFF]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター