数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal京大特色(1) | Nomal高校の範囲での証明(2) | Nomalこの表の見方を教えてください。(0) | Nomalヒルベルト空間(0) | Nomal$D_n$加群のフーリエ変換と関数のフーリエ変換との関係について(0) | Nomal群の問題(5) | Nomal合同式の計算(2) | Nomalプログラミング言語BASIC言語について。(14) | Nomal統計/区画幅について(3) | Nomal2変数関数の極値条件(2) | Nomal素数生成法について(0) | Nomalsupreme 偽物(0) | Nomal合同式の計算(4) | Nomal縦曲線について(0) | Nomal銃曲線における計画高ついて(0) | Nomal測量学について(0) | Nomal訂正です(1) | Nomal対数の取り方、シグモイド、ロジスティック関数(0) | Nomal緩和曲線の開始位置と終了地点および途中の高さxについて(0) | Nomalf'(x) の増減の判定方法(3) | Nomal三角形と内接円について改(1) | Nomal三角形と内接円について。(1) | Nomal増減表の作り方(6) | Nomal4次関数(3) | Nomal約数を mod 13 で見る(1) | Nomal三葉曲線の長さについて(2) | Nomal自作問題(3) | Nomalフェルマーの最終定理の簡単な証明9(23) | Nomal(削除)(0) | Nomalケプラー方程式による惑星の会合計算(0) | Nomal追いかけ算 惑星会合時期(1) | Nomal担当者の時間割(2) | Nomal三次関数と長方形(4) | Nomal(削除)(0) | Nomal屑スレを下げるための問題(2) | Nomal3次関数について。(8) | Nomal必要十分条件の証明(3) | Nomalフェルマーの最終定理の簡単な証明8(74) | Nomal合コン(4) | Nomal基本的な確率(2) | Nomal同型写像(0) | Nomal正2n角形と確率(4) | Nomal中学生でも解けそうな入試問題001(1) | Nomalご教示ください(5) | Nomal階段行列の作り方(4) | Nomal統計学の問題です(0) | Nomal3の倍数(4) | Nomalラプラス方程式 境界条件(0) | Nomal対偶について(8) | Nomal偶数と奇数(8) | Nomalsinの関係(2) | Nomal2^(1/3)とωと√3(4) | Nomal supreme コート(0) | Nomalフェルマーの最終定理の簡単な証明7(101) | Nomal目的の形への行列の三角化(2) | Nomal(削除)(2) | Nomal等角写像の問題です。(2) | Nomal掲示板について。(1) | Nomalフェルマーの定理 RSA暗号(1) | Nomalフェルマーの最終定理の簡単な証明6(101) | Nomalオイラーの公式(3) | Nomalグッチンコピー(0) | Nomal6次方程式(2) | Nomalベクトル解析 証明(0) | Nomal位相数学、位相空間(0) | Nomal実生活に活きる確率(0) | Nomalオイラーの公式 導関数の定義(2) | Nomalオイラーの公式(3) | Nomal2階常微分方程式 (1) | Nomalオイラーの公式(0) | Nomalフェルマーの最終定理の簡単な証明5(101) | Nomal数学について。(1) | Nomal順列(4) | Nomal線形代数(1) | Nomal整数問題(1) | Nomalフェルマーの最終定理の簡単な証明4(101) | Nomal大小の比較(7) | Nomalシミュレーションについて(1) | Nomal期待値(2) | Nomal数学について。(1) | Nomalフーリエ変換の求め方(1) | Nomalisometric matrix,p-ノルムについて(0) | Nomalフェルマーの最終定理の簡単な証明3(76) | Nomald(cos^2θ)/dθ=と置けるような相似の図を見つけたいです!(0) | Nomal1/ cos^2θの微分を画像の図を用いて解きたい!(0) | Nomalラグランジュの剰余項(1) | Nomallog2とマクローリン展開についての証明(1) | Nomal極限を求める(大学数学)(1) | Nomal三角方程式(2) | Nomal確率密度(2) | Nomal方程式(2) | Nomal多項式の係数(1) | Nomalフェルマーの最終定理の簡単な証明2(101) | Nomal複素平面上の領域について(0) | Nomal数学検定について。(0) | Nomal複素解析(2) | Nomal定積分と体積(1) | Nomal極限値(3) | Nomal複素解析(7) | Nomalフェルマーの最終定理の簡単な証明(101) |



■記事リスト / ▼下のスレッド
■48933 / 親記事)  整数について。
□投稿者/ コルム 一般人(14回)-(2018/12/24(Mon) 09:58:46)
    次の問題が分かりません。教えていただけると幸いです。
735×273 => 250×92

1545613126.png
/43KB
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48936 / ResNo.1)  Re[1]: 整数について。
□投稿者/ まるちぽすと撲滅委員会 一般人(1回)-(2018/12/24(Mon) 17:44:55)
     この質問者は自分の実力をはるかに超える問題のスレを立て、回答をひたすらねだる回答乞食である。
    ttps://oshiete.goo.ne.jp/qa/10890719.html
     (1)を回答すると
       (1)はわかりました。
    という大嘘を言って
       (2)を教えていただけると幸いです。
    とさらなる回答をねだる。

     (2)を回答すると
       (2)はわかりました。
    という大嘘を言って
       (3)を教えていただけると幸いです。
    とさらなる回答をねだる。

     (3)を回答すると
       (3)はわかりました。
    という大嘘を言って
       (4)を教えていただけると幸いです。
    とさらなる回答をねだる。

     (4)を回答すると、回答者に一言の礼も言わず、再び分不相応の問題を持ってきてスレを立てる。回答が遅いときは駄々っ子のようにマルチポストする。
     この繰り返しなので、本人はまるで実力が向上しない。
     よって回答を与えるのはムダである。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48928 / 親記事)  有理数
□投稿者/ ぱりぴ 一般人(1回)-(2018/12/23(Sun) 13:04:14)
    0でない有理数qで
    (1/2)(q^2+1/q^2)
    が整数となるもの
    を教えて下さい
    (考え方も)
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48929 / ResNo.1)  Re[1]: 有理数
□投稿者/ らすかる 一般人(4回)-(2018/12/23(Sun) 14:00:46)
    kを整数として
    (1/2)(q^2+1/q^2)=k
    q^2+1/q^2=2k
    q^2+2+1/q^2=2k+2
    (q+1/q)^2=2k+2
    q+1/q=±√(2k+2)
    √(2k+2)が有理数ならば√(2k+2)は整数(証明略)
    √(2k+2)=n(nは整数)とおくと
    q+1/q=n
    q^2-nq+1=0
    q={n±√(n^2-4)}/2
    n^2-4が平方数でなければならないのでn=±2(証明略)
    よってq={n±√(n^2-4)}/2からq=±1で
    最初の式に代入すると確かに整数1になる。
    従って答えはq=±1

引用返信/返信 [メール受信/OFF]
■48932 / ResNo.2)  Re[2]: 有理数
□投稿者/ ぱりぴ 一般人(2回)-(2018/12/24(Mon) 09:27:22)
    有り難うございます
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48905 / 親記事)  放物線と円
□投稿者/ 仙柳 一般人(1回)-(2018/11/21(Wed) 16:51:48)
    以下の問題の模範解答を教えていただけないでしょうか。
    素人が解答を作るとどうもキチッとしないものになってしまうので
    模範解答が知りたいと思っています。よろしくお願いします。

    問題
    kを正の定数とする。
    xy平面において放物線y=x^2と直線y=x+kで
    囲まれた領域に含まれる円の最大の半径を
    kで表せ。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48930 / ResNo.1)  Re[1]: 放物線と円
□投稿者/ muturajcp 一般人(22回)-(2018/12/23(Sun) 20:33:15)
    kを正の定数とする.
    xy平面において放物線y=x^2と直線y=x+kで
    囲まれた領域に含まれる円の最大の半径をrとする
    円は直線y=x+kと1点で接する
    円は放物線と1点以上で接する
    接点以外の交点を持たない
    A=(1/2,1/4)とする
    (x,y)=Aの時,放物線の接線の傾きはy'=2x=1となる
    接線は直線y=x+kの傾き1と同じ平行になる
    法線は
    y=-x+(3/4)
    となる
    法線と直線y=x+kの交点をB=(x,y)とすると
    B=((3-4k)/8,(3+4k)/8)
    |AB|/2={(4k+1)√2}/16
    となる
    ABの中点をC(x,y)とすると
    C=((7-4k)/16,(4k+5)/16)
    だから中心C半径|CA|の円の方程式は
    {x-(7-4k)/16}^2+{y-(4k+5)/16}^2=(4k+1)^2/128
    (16x+4k-7)^2+(16y-4k-5)^2=2(4k+1)^2
    32x^2+4(4k-7)x+32y^2-4(4k+5)y-4k+9=0
    放物線との交点を(x,x^2)してy=x^2を代入すると
    (2x-1)^2{8(x+1/2)^2+7-4k}=0
    0<k≦7/4の時
    円と放物線の交点は接点Aだけとなるから
    最大半径は
    r={(4k+1)√2}/16

    k>7/4の時は
    円と放物線は2点で接して中心はy軸上にある
    x座標が正の方の接点をA=(a,a^2)とすると
    法線は
    y={-1/(2a)}x+a^2+(1/2)
    だから
    中心Cは
    C=(0,a^2+(1/2))
    |CA|=√{a^2+(1/4)}
    Cから直線y=x+kへの垂線
    y=-x+a^2+(1/2)
    とy=x+kの交点をB=(x,y)とすると
    B=(a^2/2-k/2+1/4,a^2/2+k/2+1/4)
    |BC|=|CA|だから
    (k/2-a^2/2-1/4)√2=√(a^2+1/4)
    (2a^2+1-2k)^2=8a^2+2
    (2a^2-2k-1)^2=8k+2
    a^2=[2k+1-√{2(4k+1)}]/2
    |BC|=[{√(4k+1)}-√2]/2

    0<k≦7/4の時
    r={(4k+1)√2}/16

    k>7/4の時は
    r=[{√(4k+1)}-√2]/2
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48875 / 親記事)  ベクトルについて。
□投稿者/ コルム 一般人(3回)-(2018/10/27(Sat) 18:37:44)
    各辺の長さが1で底面ABCDが正方形である四角錐O-ABCDがある。辺OBの中点をP、辺ODをt:(1-t) (0<t<1)に内分する点をQとし、平面APQと辺OCの交点 をRとする。 (1)↑ARを↑AP、↑AQ、tを用いて表せ。
    (2)四角形APRQの面積をtで表せ。
    教えていただけると幸いです。
引用返信/返信 [メール受信/OFF]

▽[全レス16件(ResNo.12-16 表示)]
■48913 / ResNo.12)  Re[1]: ベクトルについて。
□投稿者/ コルム 一般人(9回)-(2018/12/11(Tue) 12:14:27)
    どうしてそうなるのか教えていただけないでしょうか?
    ここです。
    B点P'をAP'↑=2*AP↑を満たす点とすると
    ↑AR={t/(1+t)}↑AP'+{1/(1+t)}↑AQ
    だから
    点Rは線分P'Qを1:tに内分している

引用返信/返信 [メール受信/OFF]
■48914 / ResNo.13)  Re[1]: ベクトルについて。
□投稿者/ コルム 一般人(10回)-(2018/12/11(Tue) 17:50:08)
    2が抜けているように思うのですが。教えていただけると幸いです。
引用返信/返信 [メール受信/OFF]
■48915 / ResNo.14)  Re[2]: ベクトルについて。
□投稿者/ muturajcp 一般人(20回)-(2018/12/15(Sat) 11:12:24)
    Rは平面APQ上の点だから
    ↑AR=x↑AP+y↑AQ…(1)
    となるx,yがある
    PはOBの中点だから
    ↑AP=(1/2)(↑AO+↑AB)…(2)
    QはODをt:(1-t)に内分する点だから
    ↑AQ=(1-t)↑AO+t↑AD
    これと(2)を(1)に代入すると
    ↑AR=x(1/2)(↑AO+↑AB)+y{(1-t)↑AO+t↑AD}
    ↑AR=(x/2)(↑AO+↑AB)+(1-t)y↑AO+ty↑AD
    ↑AR=(x/2)↑AO+(x/2)↑AB+(1-t)y↑AO+ty↑AD
    ↑AR=(x/2)↑AO+(1-t)y↑AO+(x/2)↑AB+ty↑AD
    ↑AR={(x/2)+(1-t)y}↑AO+(x/2)↑AB+ty↑AD…(3)

    Rは直線OC上の点だから
    ↑AR=(1-z)↑AO+z↑AC
    となるzがある
    ↓↑AC=↑AB+↑ADだから
    ↑AR=(1-z)↑AO+z(↑AB+↑AD)
    ↑AR=(1-z)↑AO+z↑AB+z↑AD
    これと(3)から
    {(x/2)+(1-t)y}↑AO+(x/2)↑AB+ty↑AD=(1-z)↑AO+z↑AB+z↑AD
    ↑AO,↑AB,↑ADは1次独立だから
    ↑AOの係数が等しいから
    (x/2)+(1-t)y=1-z…(4)
    ↑ABの係数が等しいから
    x/2=z…(5)
    ↑ADの係数が等しいから
    ty=z
    これと(5)から
    x/2=yt
    ↓両辺に2をかけると
    x=2yt…(6)
    (5)を(4)に代入すると
    (x/2)+y(1-t)=1-x/2
    ↓両辺にx/2を加えると
    x+y(1-t)=1
    ↓これに(6)を代入すると
    2yt+y(1-t)=1
    y(2t+1-t)=1
    y(1+t)=1
    ↓両辺を1+tで割ると
    y=1/(1+t)…(7)
    ↓これを(6)に代入すると
    x=2t/(1+t)
    これと(7)を(1)に代入すると

    ↑AR={2t/(1+t)}↑AP+{1/(1+t)}↑AQ
    ↑AR={t/(1+t)}(2↑AP)+{1/(1+t)}↑AQ
    ↓これに↑AP'=2↑APを代入すると

    ↑AR={t/(1+t)}↑AP'+{1/(1+t)}↑AQ
引用返信/返信 [メール受信/OFF]
■48916 / ResNo.15)  Re[2]: ベクトルについて。
□投稿者/ muturajcp 一般人(21回)-(2018/12/15(Sat) 21:51:28)
    (1)の答えの
    ↑AR={2t/(1+t)}↑AP+{1/(1+t)}↑AQ

    ↑AP'=2↑AP
    を代入すると
    ↑AR={t/(1+t)}↑AP'+{1/(1+t)}↑AQ
    となるので
    点Rは線分P'Qを1:tに内分している
1000×1000 => 250×250

m201810271837.jpg
/109KB
引用返信/返信 [メール受信/OFF]
■48927 / ResNo.16)  Re[1]: ベクトルについて。
□投稿者/ コルム 一般人(12回)-(2018/12/23(Sun) 13:02:00)
    助かりました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-9] [10-16]



■記事リスト / ▲上のスレッド
■48921 / 親記事)  数列の極限
□投稿者/ metro 一般人(1回)-(2018/12/22(Sat) 23:41:18)
    n≧0、p∈Nに対して、漸化式
    a[0] = α > 1、a[n+1] = {p/(p+1)}a[n] + 1/{(p+1)(a[n])^p}
    で与えられる数列{a[n]}を考える。
    この時lim[n→∞](a[n])はどうなるか。

    この問いが分かりません。教えてください。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48925 / ResNo.1)  Re[1]: 数列の極限
□投稿者/ metro 一般人(2回)-(2018/12/23(Sun) 01:51:47)
    自己解決しました。ありがとうございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター