数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalベクトルについて。(13) | Nomalたけしのコマ大数学科の問題・・・(3) | Nomal数列(2) | Nomal放物線と円(0) | Nomal整数の個数と極限(5) | Nomal数列(2) | Nomal極限(6) | Nomal統計学についての質問(2) | Nomal確率について。(1) | Nomalベクトル場の問題(1) | Nomal楕円面と直線の交点(1) | Nomal面積の最大値(1) | Nomalfw(0) | Nomalどうしても行列式の計算がミスが誰か助けて!!(0) | Nomal箱ひげ図について。(0) | Nomalベクトルについて。(2) | Nomal複素関数(0) | Nomal三角関数の面積(2) | Nomal二次方程式の標準形への変換(1) | Nomal等式(3) | Nomal自然数の逆数和(1) | Nomal五角形(2) | Nomal桁数(1) | Nomal対数不等式(2) | Nomal三角関数(2) | Nomal不等式(2) | Nomal三次方程式(5) | Nomal数列(0) | Nomal複素級数のコーシー積(6) | Nomal統計学(1) | Nomal確率(2) | Nomal三次方程式の解(4) | Nomal確率(5) | Nomal確率(1) | Nomal接する(2) | Nomal整数(0) | Nomal待ち行列(1) | Nomal放物線と接線(2) | Nomal確率(2) | Nomal直角二等辺三角形と円の共通部分(2) | Nomal一次不等式で表される領域の面積(2) | Nomal管理人さんへ(1) | Nomal判別式(2) | Nomal数列の周期と初項(2) | Nomal近似式(2) | Nomal模範解答の解説お願いします(1) | Nomalベクトルについて。(1) | Nomal互いに素(1) | Nomalベクトルについて。(1) | Nomal二次方程式について。(1) | Nomal図形について。(1) | Nomal埋め(1) | Nomalベクトル(1) | Nomal極値(1) | Nomal極値(1) | Nomal代数学の問題(1) | Nomal位相空間の問題(1) | Nomal剰余の定理について。(1) | Nomal積分計算(2) | Nomal広義積分の質問(4) | Nomal積分範囲の極限(2) | Nomal複素数計算(2) | Nomal複素数の実部と虚部の分け方がわかりません(3) | Nomal(削除)(0) | Nomal正接の値(2) | Nomal積分に関する質問(1) | Nomal順列(6) | Nomal確率(1) | Nomal直線の通過領域(1) | Nomal場合の数(3) | Nomal数学検定2級について。(0) | Nomal二次関数について。(4) | Nomal円(5) | Nomal円順列(2) | Nomal不等式(4) | Nomal複素数(1) | Nomal模範解答の解説お願いします(1) | Nomal三角関数(1) | Nomal確率(1) | NomalP(a,b,c) = P(c|b) * P(b|a) 成立条件?(0) | Nomal確率統計についてです(0) | Nomal不等式(4) | Nomal自然数の和と倍数の性質(0) | Nomal円環(3) | Nomal三角関数(1) | Nomal微分(2) | Nomal√3 v.s. √-3(2) | Nomal多項式の解と係数(0) | Nomal有理数と整数(2) | Nomal曲線の長さ(1) | Nomal数的推理(3) | Nomal数的推理(2) | Nomal連立(1) | Nomal複素数(3) | Nomal2階導関数・第2次導関数(0) | Nomal微分(1) | Nomal数学では循環する定義・公理は許されていますか(1) | Nomal実数解の取り得る値の範囲(2) | Nomalクロム ハーツ 首饰 コピー(0) | Nomal自然数の謎(4) |



■記事リスト / ▼下のスレッド
■47245 / 親記事)  約数
□投稿者/ aaa 一般人(1回)-(2015/05/22(Fri) 20:14:56)
    nを自然数とし、
    D(n)をnの正の約数の個数
    E(n)をnの正の偶数の約数の個数
    とします。

    Σ[n≦x]D(n)〜xlogx
    は有名なのですが、
    Σ[n≦x]E(n)〜???
    はどうなるのでしょうか。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■47246 / ResNo.1)  Re[1]: 約数
□投稿者/ らすかる 大御所(325回)-(2015/05/22(Fri) 23:26:32)
    Σ[n≦x]D(n)=x+[x/2]+[x/3]+…+[x/n]なので
    {Σ[n≦x]x/n}-n<D(n)<Σ[n≦x]x/nとなり
    D(n)〜Σ[n≦x]x/n=xΣ[n≦x]1/n〜xlogx
    ということだと思いますが、偶数だけならば
    Σ[n≦x]E(n)=[x/2]+[x/4]+…+[x/(2[n/2])]なので
    {Σ[2m≦x]x/(2m)}-m<E(n)<Σ[2m≦x]x/(2m)となり
    E(n)〜Σ[2m≦x]x/(2m)=(x/2)Σ[2m≦x]1/m〜(x/2)log(x/2)〜(xlogx)/2
    となると思います。
引用返信/返信 [メール受信/OFF]
■47247 / ResNo.2)  Re[2]: 約数
□投稿者/ aaa 一般人(2回)-(2015/05/23(Sat) 06:23:29)
    ありがとうございました。m(_ _)m
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47235 / 親記事)  部分列
□投稿者/ ビニル 一般人(1回)-(2015/05/20(Wed) 17:00:19)
    以下の条件をみたす実数列{a[n]}の具体例を教えて下さい。

    条件
    任意の実数aに対し、aに収束する部分列が存在する。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■47236 / ResNo.1)  Re[1]: 部分列
□投稿者/ らすかる 大御所(324回)-(2015/05/20(Wed) 18:41:29)
    以下のような例でいかがでしょうか。

    1,-1,
    2,-2,3/2,-3/2,1,-1,1/2,-1/2,
    4,-4,15/4,-15/4,7/2,-7/2,13/4,-13/4,3,-3,11/4,-11/4,5/2,-5/2,9/4,-9/4,
     2,-2,7/4,-7/4,3/2,-3/2,5/4,-5/4,1,-1,3/4,-3/4,1/2,-1/2,1/4,-1/4,
    8,-8,63/8,-63/8,31/4,-31/4,61/8,-61/8,15/2,-15/2,・・・
引用返信/返信 [メール受信/OFF]
■47239 / ResNo.2)  Re[2]: 部分列
□投稿者/ ビニル 一般人(2回)-(2015/05/21(Thu) 17:53:03)
    素晴らしい発想に脱帽です。
    ありがとうございます。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47234 / 親記事)  無限集合
□投稿者/ X-FILE 一般人(1回)-(2015/05/19(Tue) 20:47:05)
    Aが無限集合である ⇔ Aの真部分集合Bで|A|=|B|となるものが存在する

    この証明を教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■47237 / ResNo.1)  Re[1]: 無限集合
□投稿者/ X-FILE 一般人(2回)-(2015/05/20(Wed) 20:54:05)
    すみません、|A|は集合Aの濃度を表しています。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47229 / 親記事)  数列の収束
□投稿者/ ぽむぽむ 一般人(1回)-(2015/05/19(Tue) 17:01:39)
    a[0]=0
    a[n+1]=cos(a[n])
    で定めた数列{a[n]}が収束することの
    証明が知りたいので教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス4件(ResNo.1-4 表示)]
■47230 / ResNo.1)  Re[1]: 数列の収束
□投稿者/ IT 一般人(5回)-(2015/05/19(Tue) 18:54:09)
    2015/05/19(Tue) 19:03:01 編集(投稿者)

    方針だけ y=cosx,y=xのグラフを描いて考えると見通しがいいと思います

     α=cosα,0<α<π/2 なるαが存在
     |a[n+1]-α|=|cos(a[n])-cosα|
     =|-sin(c[n])||a[n]-α|, 0<c[n]<1なるc[n]が存在(平均値の定理)
    ≦(sin1)|a[n]-α|
     0<sin1<1なのでa[n]はαに収束.
引用返信/返信 [メール受信/OFF]
■47231 / ResNo.2)  Re[2]: 数列の収束
□投稿者/ ぽむぽむ 一般人(2回)-(2015/05/19(Tue) 19:01:20)
    2015/05/19(Tue) 19:02:06 編集(投稿者)
    No47230に返信(ITさんの記事)
    > 2015/05/19(Tue) 18:59:56 編集(投稿者)
    >
    > 方針だけ y=cosx,y=xのグラフを描いて考えると見通しがいいと思います
    >  α=cosα,0<α<π/2 なるαが存在
    >  |a[n+1]-α|=|cos(a[n])-cosα|
    >  =|-sin(c[n])||a[n]-cosα|, 0<c[n]<1なるc[n]が存在,(平均値の定理)
    > =|-sin(c[n])||a[n]-α|


    lim[n→∞]|sin(c[1])sin(c[2])…sin(c[n])|=0
    となることはどのように分かるのですか?
引用返信/返信 [メール受信/OFF]
■47232 / ResNo.3)  Re[3]: 数列の収束
□投稿者/ IT 一般人(6回)-(2015/05/19(Tue) 19:05:36)
    2015/05/19(Tue) 19:06:27 編集(投稿者)

    0<sin(c[n])<sin1<1 ですから。
引用返信/返信 [メール受信/OFF]
■47233 / ResNo.4)  Re[4]: 数列の収束
□投稿者/ ぽむぽむ 一般人(3回)-(2015/05/19(Tue) 19:25:26)
    なるほどです。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-4]



■記事リスト / ▲上のスレッド
■47228 / 親記事)  逆元
□投稿者/ Q 一般人(1回)-(2015/05/18(Mon) 23:53:00)
    (Z/(5*Z))[X]/<X^3+X+1> の元 X^2+X+<X^3+X+1>の逆元をお願いします
引用返信/返信 [メール受信/OFF]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター