数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
UpDatex^3 + y^3 + z^3 = w^3(1) | UpDateコンデンサー回路(1) | UpDate屑スレを下げるための問題(4) | UpDateフェルマーの最終定理の簡単な証明9(4) | Nomaltan(1)(ラディアン) は有理数か(0) | Nomalラプラス変換 vs 演算子法(0) | Nomal有理数解を持たない三次方程式(0) | Nomal円柱の表面積(1) | Nomal三段論法(1) | Nomalド・モルガンの法則(0) | Nomal簡単な微分方程式(0) | Nomal3次関数について。(8) | Nomal必要十分条件の証明(3) | Nomal6÷2×3 = 9(1) | Nomal三次関数と長方形(3) | Nomalフェルマーの最終定理の簡単な証明8(74) | Nomal合コン(4) | Nomal基本的な確率(2) | Nomal同型写像(0) | Nomal正2n角形と確率(4) | Nomal中学生でも解けそうな入試問題001(1) | Nomalご教示ください(5) | Nomal階段行列の作り方(4) | Nomal統計学の問題です(0) | Nomal3の倍数(4) | Nomalラプラス方程式 境界条件(0) | Nomal対偶について(8) | Nomal偶数と奇数(8) | Nomalsinの関係(2) | Nomal2^(1/3)とωと√3(4) | Nomal supreme コート(0) | Nomalフェルマーの最終定理の簡単な証明7(101) | Nomal目的の形への行列の三角化(2) | Nomal(削除)(2) | Nomal等角写像の問題です。(2) | Nomal掲示板について。(1) | Nomalフェルマーの定理 RSA暗号(1) | Nomalフェルマーの最終定理の簡単な証明6(101) | Nomalオイラーの公式(3) | Nomalグッチンコピー(0) | Nomal6次方程式(2) | Nomalベクトル解析 証明(0) | Nomal位相数学、位相空間(0) | Nomal実生活に活きる確率(0) | Nomalオイラーの公式 導関数の定義(2) | Nomalオイラーの公式(3) | Nomal2階常微分方程式 (1) | Nomalオイラーの公式(0) | Nomalフェルマーの最終定理の簡単な証明5(101) | Nomal数学について。(1) | Nomal順列(4) | Nomal線形代数(1) | Nomal整数問題(1) | Nomalフェルマーの最終定理の簡単な証明4(101) | Nomal大小の比較(7) | Nomalシミュレーションについて(1) | Nomal期待値(2) | Nomal数学について。(1) | Nomalフーリエ変換の求め方(1) | Nomalisometric matrix,p-ノルムについて(0) | Nomalフェルマーの最終定理の簡単な証明3(76) | Nomald(cos^2θ)/dθ=と置けるような相似の図を見つけたいです!(0) | Nomal1/ cos^2θの微分を画像の図を用いて解きたい!(0) | Nomalラグランジュの剰余項(1) | Nomallog2とマクローリン展開についての証明(1) | Nomal極限を求める(大学数学)(1) | Nomal三角方程式(2) | Nomal確率密度(2) | Nomal方程式(2) | Nomal多項式の係数(1) | Nomalフェルマーの最終定理の簡単な証明2(101) | Nomal複素平面上の領域について(0) | Nomal数学検定について。(0) | Nomal複素解析(2) | Nomal定積分と体積(1) | Nomal極限値(3) | Nomal複素解析(7) | Nomalフェルマーの最終定理の簡単な証明(101) | Nomal高校推論の問題(1) | Nomal漸化式の項を減らす(4) | Nomalカーリングの7試合とは(4) | Nomal(削除)(3) | Nomalたぶん三角関数の等式(6) | Nomal確率、期待値の計算(0) | Nomal数学オリンピックの幾何の問題(2) | Nomal確率について。(1) | Nomal自然数の方程式(2) | Nomal単調増加数列(2) | Nomal数学について。(1) | Nomal平面図形について。(2) | Nomal平面図形について。(1) | Nomal確率について。(4) | Nomal確率について。(1) | Nomal確率について。(4) | Nomal確率について。(2) | Nomal統計について。(4) | Nomal整数解(1) | Nomalベクトルについて。(1) | Nomalベクトルについて。(1) | Nomal確率(2) |



■記事リスト / ▼下のスレッド
■47647 / 親記事)  最短
□投稿者/ m 一般人(1回)-(2016/04/25(Mon) 19:35:36)
    二つの半直線OxとOyが与えられ
    そのなす角の内部に点Pが与えられたとします。
    Pを通る直線を描き、Oxとの交点をA、Oyとの交点をBとします。
    Ox=x軸 ,OY={(x,y)|y=k*x}, P=(a,b)とする。
    ABが最小なる直線AB を 求めて下さい;

引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47626 / 親記事)  三重積分
□投稿者/ ライカー 一般人(1回)-(2016/04/16(Sat) 08:01:53)
    三重積分の問題です。

     ∭v dxdydz (v: 0≦y+z≦1、0≦z+x≦1、0≦x+y≦1))

    図を描いて三角錐の体積の公式を利用して単純に求めると、1/6になると思うのですが、答えは1/2になるようです。

    求め方がわかりません。
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■47627 / ResNo.1)  Re[1]: 三重積分
□投稿者/ ライカー 一般人(2回)-(2016/04/16(Sat) 12:54:26)
    変数変換で求めたら、1/2になりました。

    通常の方法では、どのように求めたら良いのでしょうか。
引用返信/返信 [メール受信/OFF]
■47631 / ResNo.2)  Re[2]: 三重積分
□投稿者/ らすかる 一般人(8回)-(2016/04/16(Sat) 15:45:11)
    「通常の方法」はわかりませんが、図を描いて求めると
    底面が斜辺√2の直角二等辺三角形、
    高さが1/2の三角錐6個に分けられますので
    1/2×1/2×1/3×6=1/2
    となりますね。

引用返信/返信 [メール受信/OFF]
■47644 / ResNo.3)  Re[3]: 三重積分
□投稿者/ ライカー 一般人(3回)-(2016/04/24(Sun) 11:05:45)
    No47631に返信(らすかるさんの記事)
    > 「通常の方法」はわかりませんが、図を描いて求めると
    > 底面が斜辺√2の直角二等辺三角形、
    > 高さが1/2の三角錐6個に分けられますので
    > 1/2×1/2×1/3×6=1/2
    > となりますね。
    >
     ありがとうございました。もう少し考えてみます。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47643 / 親記事)  二等辺三角形
□投稿者/ d 一般人(2回)-(2016/04/22(Fri) 14:55:17)
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47640 / 親記事)  数学的帰納法
□投稿者/ N 一般人(1回)-(2016/04/21(Thu) 19:23:40)
    正の数a,b,x,yを考える。a+b=1ならば、すべての自然数nにたいして不等式
    (ax+by)^n≦ax^n+by^nが成り立つことを証明せよ

    証明の方法がいまいちわからないので教えてください
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■47641 / ResNo.1)  Re[1]: 数学的帰納法
□投稿者/ らすかる 一般人(12回)-(2016/04/21(Thu) 19:55:14)
    補題
    任意の正の数x,yと自然数kに対して
    {x^(k+1)+y^(k+1)}-(x^ky+xy^k)
    =(x^k-y^k)(x-y)
    =(x-y)^2・Σ[i=0〜k-1]{x^i・y^(k-1-i)}
    ≧0 なので
    x^(k+1)+y^(k+1)≧x^ky+xy^k

    本題
    n=1のとき明らかに成り立つ。
    n=kのとき成り立つとすると
    (ax+by)^k≦ax^k+by^k … (1)
    n=k+1のとき
    (ax+by)^(k+1)=(ax+by)^k・(ax+by)
    ≦(ax^k+by^k)(ax+by) (∵(1)より)
    =a^2x^(k+1)+b^2y^(k+1)+ab(x^ky+xy^k)
    ≦a^2x^(k+1)+b^2y^(k+1)+ab{x^(k+1)+y^(k+1)} (∵補題より)
    =a(a+b)x^(k+1)+b(a+b)y^(k+1)
    =ax^(k+1)+by^(k+1)
    となり成り立つ。

引用返信/返信 [メール受信/OFF]
■47642 / ResNo.2)  Re[2]: 数学的帰納法
□投稿者/ N 一般人(2回)-(2016/04/21(Thu) 20:20:20)
    回答ありがとうございました

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▲上のスレッド
■47638 / 親記事)  約数
□投稿者/ はるみ 一般人(1回)-(2016/04/19(Tue) 16:23:35)
    nを自然数とします。
    nの約数のうち、
    √nとの差の絶対値が最小のもの
    は、
    √n以下の約数のうち最大のもの
    ですか?
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■47639 / ResNo.1)  Re[1]: 約数
□投稿者/ らすかる 一般人(11回)-(2016/04/19(Tue) 19:06:10)
    そうです。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター