数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal複素積分(2) | Nomalテイラー展開(2) | Nomal線形変換(1) | Nomal大学数学 線形代数 部分空間の証明(0) | Nomal証明問題(1) | Nomal一次結合と一次独立(0) | Nomal証明問題です(0) | Nomalz^5 = -1 を解く(2) | Nomal空間上の点(2) | Nomal複素関数の部分分数分解(4) | Nomal熱力学の本に出てくる式変形がわかりません。(0) | Nomalピタゴラス数の求め方(0) | Nomal二項定理を使ったピタゴラスの定理の証明(0) | Nomal二項定理を使ったフェルマーの最終定理の証明(0) | Nomal2次方程式(3) | Nomal数学A 図形の計算(0) | Nomalある式の微分における式変形について(2) | Nomal3次元空間の点(2) | Nomal線形代数」(0) | Nomal統計学の問題(0) | Nomal自然対数 e について(3) | Nomal1/(z^2-1) を z = 1 でローラン展開する。(2) | Nomal無限等比級数について(2) | Nomalcosの不等式(2) | Nomal品質の服(0) | Nomal複素平面上の円(2) | Nomal積分の解き方について(0) | Nomal期待値(2) | Nomal3の個数(7) | Nomal複素数の関数(5) | Nomal分数関数の積分(2) | Nomalベクトルについて。(1) | Nomalベクトルについて。(0) | Nomalベクトル解析(1) | Nomal線形代数 証明(0) | Nomalベクトル解析のスカラー場について(2) | Nomalフーリエ展開とフーリエ変換(0) | Nomal加速度の次元と速度の次元(1) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal第2可算公理(0) | Nomalフェルマーの最終定理の簡単な証明9(25) | Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal無限和(2) | Nomal大学一年 線形代数(1) | Nomal大学で出された行列の課題がわかりません。(1) | Nomal広義積分(0) | Nomal 至急この問題を解説していただきたいです(0) | Nomal有理数(1) | Nomal論理関数(0) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal整数解(2) | Nomal数列の一般項(2) | Nomal統計学 二項分布(0) | Nomal連立微分方程式(1) | Nomal連立方程式(3) | Nomal全ての 整数解 等(0) | Nomal解析学(2) | Nomal行列のn乗(1) | Nomal色々な方法 で(0) | Nomal初期値問題(1) | Nomal解析学(1) | Nomal統計学 確率密度関数 分布関数 確率(0) | Nomal統計学についての質問(3) | Nomal対数尤度関数について!(0) | Nomal関数について(0) | Nomal最小公倍数とはちがいますが。。(2) | Nomal論理を教えて下さい(12) | Nomal三次方程式(2) | Nomal消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学(2) | Nomal線形代数(0) | Nomal極限(0) | Nomalボルスク・ウラムの定理の証明(0) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal素数(0) | Nomalデルタ関数に関する問題(0) | Nomal正三角形と半円(2) | Nomal不等式(2) | Nomal漸化式(0) | Nomal確率における情報(17) | Nomal統計学の質問(0) | Nomal確率変数(0) | Nomal複数の点によって構成される多角形を相互の距離情報から類推する方法(6) | Nomal正射影再び(笑)(4) | Nomal正射影:正三角形→2等辺三角形(2) | Nomal球面上の2つの円の重なっている部分の面積(0) | Nomal三角法(0) | Nomal大学数学です(0) | Nomal三角形(2) | Nomal数列の疑問(2) | Nomal素数積の評価〜ベルトラン・チェビシェフの定理(5) | Nomaleの極限(2) | Nomal積分(0) | Nomal四角形の極限(2) |



■記事リスト / ▼下のスレッド
■48360 / 親記事)  極値
□投稿者/ 安室 一般人(1回)-(2017/10/06(Fri) 21:50:59)
    x^2 + 2 x y + 3 y^2 - 2 y - 4 = 0 のとき x の最小値, 最大値を求めよ.
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48515 / ResNo.1)  Re[1]: 極値
□投稿者/ muturajcp 一般人(7回)-(2018/08/17(Fri) 16:41:44)
    x^2+2xy+3y^2-2y-4=0
    (x+y)^2=-2y^2+2y+4
    (x+y)^2=-2(y+1)(y-2)≧0
    (y+1)(y-2)≦0
    -1≦y≦2
    x=-y±√(4+2y-2y^2)

    x'
    =-1±(1-2y)/√(4+2y-2y^2)
    ={±(1-2y)-√(4+2y-2y^2)}/√(4+2y-2y^2)
    ={(1-2y)^2-(4+2y-2y^2)}/√(4+2y-2y^2)/{±(1-2y)+√(4+2y-2y^2)}
    ={1-4y+4y^2-(4+2y-2y^2)}/√(4+2y-2y^2)/{±(1-2y)+√(4+2y-2y^2)}
    =(6y^2-6y-3)/√(4+2y-2y^2)/{±(1-2y)+√(4+2y-2y^2)}
    =3(2y^2-2y-1)/√(4+2y-2y^2)/{±(1-2y)+√(4+2y-2y^2)}
    =6{y-(1-√3)/2}{y-(1+√3)/2}/√(4+2y-2y^2)/{±(1-2y)+√(4+2y-2y^2)}

    x=-y+√(4+2y-2y^2)の時
    -1≦y<(1-√3)/2の時x'>0だからxは増加
    y=(1-√3)/2の時最大値x=(-1+3√3)/2
    (1-√3)/2<y<2の時x'<0だからxは減少

    x=-y-√(4+2y-2y^2)の時
    -1≦y<(1+√3)/2の時x'<0だからxは減少
    y=(1+√3)/2の時最小値x=(-1-3√3)/2
    (1+√3)/2<y<2の時x'>0だからxは増加

    最小値x=(-1-3√3)/2
    最大値x=(-1+3√3)/2
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48009 / 親記事)  代数学の問題
□投稿者/ socksman 一般人(1回)-(2017/06/08(Thu) 14:56:50)
    以下の問題が分かりません。

    解説をお願いします。
1080×219 => 250×50

IMG_20170607_230206.jpg
/49KB
引用返信/返信 [メール受信/ON]

▽[全レス1件(ResNo.1-1 表示)]
■48514 / ResNo.1)  Re[1]: 代数学の問題
□投稿者/ muturajcp 一般人(5回)-(2018/08/17(Fri) 14:59:57)
    (1)
    Gを位数|G|=4の群
    x∈G
    [x]をxから生成される巡回群
    とする
    [x]はGの部分群だから
    部分群[x]の位数|[x]|は4の約数だから
    (|[x]|=1).or.(|[x]|=2).or.(|[x]|=4)
    |[x]|=4となる[x]がある時
    |[x]|=|G|=4だから[x]=Gとなり
    Gは1元xから生成される巡回群だから
    GはZ/4Zと同型である

    |[x]|=4となるxが無い時
    |[x]|=1の時xは単位元0だから
    x≠0となるすべてのxに対して
    |[x]|=2となる
    G={0,a,b,c}とすると
    |[a]|=|[b]|=|[c]|=2だから
    a+a=b+b=c+c=0
    aの逆元はaだからa+b≠0≠b+a,a+c≠0≠c+a
    b≠0だからa+b≠a≠b+a,b+c≠c≠c+b
    a≠0だからa+b≠b≠b+a,a+c≠c≠c+a
    ∴a+b=c=b+a
    c≠0だからa+c≠a≠c+a,b+c≠b≠c+b
    ∴a+c=b=c+a
    bの逆元はbだからb+c≠0=c+b
    ∴b+c=a=c+b
    0=(0,0)
    a=(1,0)
    b=(0,1)
    c=(1,1)
    とすれば
    a+a=b+b=c+c=0(mod2)
    a+b=b+a=c
    a+c=c+a=b(mod2)
    b+c=c+b=a(mod2)
    だから
    GはZ/2Z×Z/2Zと同型である

    (2)
    {1,(1,2,3,4),(1,3)(2,4),(1,4,3,2)}
    {1,(1,2,4,3),(1,4)(2,3),(1,3,4,2)}
    {1,(1,3,2,4),(1,2)(3,4),(1,4,2,3)}

    (3)
    {1,(1,2),(3,4),(1,2)(3,4)}
    {1,(1,3),(2,4),(1,3)(2,4)}
    {1,(1,4),(2,3),(1,4)(2,3)}
    {1,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47847 / 親記事)  位相空間の問題
□投稿者/ ユークリッド 一般人(1回)-(2017/01/07(Sat) 23:55:27)
    (X,d)を完備距離空間、A⊂Xとする。AはdのAへの制限により距離空間となる。このとき、次の条件が同値であることを示せ。

    (1)(A,d)は完備。

    (2)Aは(X,d)の閉集合。

    全然分かりません。よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48513 / ResNo.1)  Re[1]: 位相空間の問題
□投稿者/ muturajcp 一般人(3回)-(2018/08/16(Thu) 08:14:07)
    (X,d)を完備距離空間、A⊂Xとする
    AはdのAへの制限により距離空間となる
    N=(全自然数)
    clA=(Aの閉包)とする
    (1)→(2)の証
    (A,d)は完備
    b∈cl(A)とする
    任意の自然数n∈Nに対して
    a_n∈{x∈X|d(x,b)<1/n}∩A
    となるa_nが存在する
    任意のε>0に対して
    n_0>1/εとなる自然数n_0がある
    n>n_0となる任意の自然数nに対して
    d(a_n,b)<1/n<1/n_0<ε
    となるから
    lim_{n→∞}a_n=b
    {a_n}_{n∈N}はbに収束する
    収束する数列はコーシー列だから
    {a_n}_{n∈N}は完備Aのコーシー列となるから
    Aの要素に収束するから
    b∈A
    だから
    cl(A)=A
    だから
    ∴Aは(X,d)の閉集合

    (2)→(1)の証
    Aは(X,d)の閉集合
    A⊃{a_n}_{n∈N}はコーシー列
    とする
    (X,d)は完備だから
    lim_{n→∞}a_n=b∈X
    となるbがある
    任意のε>0に対して
    ある自然数n_0が存在して
    n>n_0となる任意の自然数nに対して
    d(a_n,b)<ε
    だから
    a_{n_0+1}
    ∈{x∈X|d(x,b)<ε}∩{a_n}_{n∈N}
    ⊂{x∈X|d(x,b)<ε}∩A
    だから
    {x∈X|d(x,b)<ε}∩A≠φ
    だから
    b∈cl(A)
    Aは閉集合だから
    b∈cl(A)=A
    だから
    b∈A
    Aのコーシー列はAの要素に収束するから
    ∴(A,d)は完備
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48466 / 親記事)  剰余の定理について。
□投稿者/ コルム 一般人(2回)-(2018/06/30(Sat) 09:45:09)
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48512 / ResNo.1)  Re[1]: 剰余の定理について。
□投稿者/ muturajcp 一般人(1回)-(2018/08/12(Sun) 09:12:53)
    問題に
    整式P(x)は(x+1)^2で割ると割り切れて、
    と書いてあるから
    No.4
    P(x)=(x+1)^2{(x-2)Q(x)+a}+r(x)

    P(x)が(x+1)^2で割り切れるためには
    r(x)=0
    でなければならない
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■48507 / 親記事)  積分計算
□投稿者/ こいち 一般人(11回)-(2018/07/29(Sun) 01:32:27)
    (x-1)^2/(x^2+1)^2について不定積分の解法を、解ける方お願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48508 / ResNo.1)  Re[1]: 積分計算
□投稿者/ らすかる 一般人(25回)-(2018/07/29(Sun) 02:08:19)
    (x-1)^2/(x^2+1)^2
    =(x^2-2x+1)/(x^2+1)^2
    =(x^2+1)/(x^2+1)^2-2x/(x^2+1)^2
    =1/(x^2+1)-2x/(x^2+1)^2
    と分ければ、1/(x^2+1)の不定積分はarctanx、
    2x/(x^2+1)^2の不定積分はx^2+1=tとおけば簡単ですね。

引用返信/返信 [メール受信/OFF]
■48509 / ResNo.2)  Re[2]: 積分計算
□投稿者/ こいち 一般人(12回)-(2018/07/29(Sun) 10:58:01)
    なるほど。発想が乏しかったです。
    やっぱりコツなどではなく経験なのでしょうか...(-_-;)

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター