数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalベクトルについて。(1) | Nomal複素関数(0) | Nomal三角関数の面積(2) | Nomal二次方程式の標準形への変換(1) | Nomal等式(3) | Nomal自然数の逆数和(1) | Nomal五角形(2) | Nomal極限(0) | Nomal桁数(1) | Nomal対数不等式(2) | Nomal三角関数(2) | Nomal不等式(2) | Nomal三次方程式(5) | Nomal数列(0) | Nomal複素級数のコーシー積(6) | Nomal統計学(1) | Nomal確率(2) | Nomal三次方程式の解(4) | Nomal確率(5) | Nomal確率(1) | Nomal接する(2) | Nomal整数(0) | Nomal待ち行列(1) | Nomal放物線と接線(2) | Nomal確率(2) | Nomal直角二等辺三角形と円の共通部分(2) | Nomal一次不等式で表される領域の面積(2) | Nomal管理人さんへ(1) | Nomal判別式(2) | Nomal数列の周期と初項(2) | Nomal近似式(2) | Nomal模範解答の解説お願いします(1) | Nomalベクトルについて。(1) | Nomal互いに素(1) | Nomalベクトルについて。(1) | Nomal二次方程式について。(1) | Nomal図形について。(1) | Nomal埋め(1) | Nomalベクトル(1) | Nomal極値(1) | Nomal極値(1) | Nomal代数学の問題(1) | Nomal位相空間の問題(1) | Nomal剰余の定理について。(1) | Nomal積分計算(2) | Nomal広義積分の質問(4) | Nomal積分範囲の極限(2) | Nomal複素数計算(2) | Nomal複素数の実部と虚部の分け方がわかりません(3) | Nomal(削除)(0) | Nomal正接の値(2) | Nomal積分に関する質問(1) | Nomal順列(6) | Nomal確率(1) | Nomal直線の通過領域(1) | Nomal場合の数(3) | Nomal数学検定2級について。(0) | Nomal二次関数について。(4) | Nomal円(5) | Nomal円順列(2) | Nomal不等式(4) | Nomal複素数(1) | Nomal模範解答の解説お願いします(1) | Nomal三角関数(1) | Nomal確率(1) | NomalP(a,b,c) = P(c|b) * P(b|a) 成立条件?(0) | Nomal確率統計についてです(0) | Nomal不等式(4) | Nomal自然数の和と倍数の性質(0) | Nomal円環(3) | Nomal三角関数(1) | Nomal微分(2) | Nomal√3 v.s. √-3(2) | Nomal多項式の解と係数(0) | Nomal有理数と整数(2) | Nomal曲線の長さ(1) | Nomal数的推理(3) | Nomal数的推理(2) | Nomal連立(1) | Nomal複素数(3) | Nomal2階導関数・第2次導関数(0) | Nomal微分(1) | Nomal数学では循環する定義・公理は許されていますか(1) | Nomal実数解の取り得る値の範囲(2) | Nomalクロム ハーツ 首饰 コピー(0) | Nomalベクトル場の問題(0) | Nomal自然数の謎(4) | Nomalバルビエの定理証明(1) | Nomal三角形(0) | Nomal数列(8) | Nomal整式について。(0) | Nomal確率について。(0) | Nomal直線と三角形(1) | Nomal2変数関数(1) | Nomal平行四辺形(2) | Nomal計算量について(1) | Nomal昔の東大模試の数列(2) | Nomal準同型写像(3) | Nomal互いに素(2) | Nomal数列の最大項(1) |



■記事リスト / ▼下のスレッド
■47567 / 親記事)  生理中?
□投稿者/ 掛け流し 一般人(1回)-(2016/02/13(Sat) 12:47:18)
    次の問題を考えてみました。(卑近ですいません。)
    「ヒトの生理周期を28日とし、生理期間を7日間とする。
    今、目の前のヒトが、生理中の確率を求めよ。」
     解答として、7/28=1/4 でよろしいでしょうか?
    ご教授下さい。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47562 / 親記事)  正規直交基底は元の基底の定数倍?
□投稿者/ Haruka 一般人(1回)-(2016/02/09(Tue) 13:17:01)
    こんにちは。下記の証明を教えてください。

    n次元F線形空間Vの基底を{v_1,v_2,…,v_n}とする。
    これらをグラムシュミットの直交化法で正規直交化してVの正規直交基底{u_1,u_2,…,u_n}を得ると,
    ∀i∈{1,2,…,n}に対して,∃j∈{1,2,…,n},0≠∃c∈F;v_i=cu_jなる事はどうすれば示せますでしょうか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■47563 / ResNo.1)  Re[1]: 正規直交基底は元の基底の定数倍?
□投稿者/ 黄桃 一般人(1回)-(2016/02/11(Thu) 13:31:48)
    それが真ならどんな基底も直交基底になってしまいます。
    直交基底でない基底は存在します(R^2 で (1,0)と(1,1)など)から、どうやっても示せないでしょう。
引用返信/返信 [メール受信/OFF]
■47564 / ResNo.2)  Re[2]: 正規直交基底は元の基底の定数倍?
□投稿者/ Haruka 一般人(2回)-(2016/02/11(Thu) 23:56:35)
    そうでよね。有難うございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47554 / 親記事)  (削除)
□投稿者/ -(2016/01/07(Thu) 16:18:09)
    この記事は(投稿者)削除されました
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■47555 / ResNo.1)  Re[1]: 双子素数について
□投稿者/ らすかる 一般人(7回)-(2016/01/07(Thu) 17:33:13)
    最初の行から間違いです。
    2×3×5×7×11×13+1 = 30031 = 59×509
    であり素数ではありません。
    同様に
    2×3×5×7-1 = 209 = 11×19
    ですから2行目も正しくありません。

引用返信/返信 [メール受信/OFF]
■47556 / ResNo.2)  Re[2]: 双子素数について
□投稿者/ みぃみぃ 一般人(2回)-(2016/01/07(Thu) 20:34:12)
    ありがとうございます。
    kより大きい素数の存在を忘れてました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47553 / 親記事)  外接円との関係
□投稿者/ 五郎丸 一般人(1回)-(2016/01/03(Sun) 14:39:05)
    三角形の三辺の長さを a, b, c
    外接円の半径を R とします.
    R^2 = (a^2+b^2+c^2)/9 ⇔ R^2 = (a+b+c)^2/27
    が成り立つことの証明を教えて下さい.
引用返信/返信 [メール受信/OFF]



■記事リスト / ▲上のスレッド
■47546 / 親記事)  小数部分
□投稿者/ あけおめ 一般人(1回)-(2016/01/01(Fri) 00:02:54)
    {x}で実数xの小数部分を表すことにします。
    {41n/97}+41/97≧1
    をみたす自然数nで1≦n≦97をみたすものの合計を教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス4件(ResNo.1-4 表示)]
■47548 / ResNo.1)  Re[1]: 小数部分
□投稿者/ らすかる 一般人(4回)-(2016/01/01(Fri) 00:55:29)
    41と97は互いに素なので、41を1倍〜97倍した数を
    97で割った余りはすべて異なります。
    つまり{41n/97}の値は0/97,1/97,2/97,…,96/97の97通りになります。
    よって条件を満たすものの個数は{41n/97}が1-1/97〜1-41/97となる41個です。

引用返信/返信 [メール受信/OFF]
■47549 / ResNo.2)  Re[2]: 小数部分
□投稿者/ あけおめ 一般人(2回)-(2016/01/01(Fri) 01:02:13)
    nの値の和は何になりますか?
引用返信/返信 [メール受信/OFF]
■47551 / ResNo.3)  Re[3]: 小数部分
□投稿者/ らすかる 一般人(6回)-(2016/01/01(Fri) 04:04:50)
    あ、条件を満たすnの和を求める問題だったのですね。失礼しました。
    それであれば、
    41n/97=a+b/97(ただし0≦a≦40, 56≦b≦96)
    であるnが求めるものであり、このa,bはnに対してすべて異なりますので
    Σ[a=0〜40]n = (97/41)(a+(56+a)/97) = 2016
    となりますね。

引用返信/返信 [メール受信/OFF]
■47552 / ResNo.4)  Re[4]: 小数部分
□投稿者/ あけおめ 一般人(3回)-(2016/01/01(Fri) 13:43:17)
    ありがとうございます!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-4]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター