数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal円錐台の断面積(9) | Nomal相関係数と共分散(1) | Nomallogの計算(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal複素数平面(1) | Nomal複素数 証明(難)(0) | Nomal確率の問題が分かりません 助けてください(1) | Nomal極限(3) | Nomalメビウス変換(0) | Nomal複素数 写像 (0) | Nomal複素数平面(0) | Nomal解答を教えてください(1) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal確率の不等式(1) | Nomal無理関数の積分(大学)(2) | Nomal複素数(1) | Nomal確率(2) | Nomal囲まれた面積(2) | Nomal複素数(2) | Nomal微分可能な点を求める問題(1) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal極限の問題 2改(1) | Nomal極限の問題2(1) | Nomal極限の問題(1) | Nomal多項式の整除(1) | Nomal三角形(1) | Nomal三角数の和(0) | Nomalコラッツ予想(0) | Nomal平方数(1) | Nomal整数問題(1) | Nomal低レベルな問題ですいません(2) | Nomal中学数学によるフェルマーの最終定理の証明(1) | Nomalガウス整数の平方和(8) | Nomal環でしょうか(2) | Nomal三角関数の式(0) | Nomal大学数学 位相数学(1) | Nomal確率(1) | Nomal1/{z^2(z-1)^2} z=0でローラン展開(1) | Nomal速度(2) | Nomali^iについて(2) | Nomal(x+1)^n-x^n(1) | Nomal定積分(1) | Nomal複素数平面(6) | Nomal円に内接する四角形(2) | Nomal不等式(4) | Nomal代数学(1) | Nomal極限(0) | Nomal大学数学(0) | Nomal三角形(2) | Nomal多項式(1) | Nomal有限体(0) | Nomal場合の数(2) | Nomal同値関係が分かりません(0) | Nomal素因数(1) | Nomal質問(2) | Nomal周期関数(1) | Nomal不等式(2) | Nomal確立 基礎問題(2) | NomalCELINE コピー(0) | Nomal整数問題(2) | Nomal二項係数2nCn(1) | Nomal係数(4) | Nomalこれだけで求められるの?(3) | Nomal不等式(2) | Nomal期待値(2) | Nomal整数問題(1) | Nomal二次方程式の定数を求める(3) | Nomal正十二面体(2) | Nomal複素数と図形(1) | Nomal整数の例(4) | Nomal大学の積分の問題です(0) | Nomal位相数学(0) | Nomalコラッツ予想について(0) | Nomalコラッツ予想について(0) | Nomal線形代数(0) | Nomalkkk(0) | Nomalお金がかからない(0) | Nomal関数方程式(2) | Nomal大学数学難しすぎて分かりません。お願いします(0) | Nomal大学数学難しすぎて分かりません。。(0) | Nomalコラッツ予想(0) | Nomalべズーの定理(0) | Nomal数学はゲーム(3) | Nomal解析学(0) | Nomal位相数学(1) | Nomal大学数学 位相数学(2) | Nomal数検準2級は難しい(0) | Nomal条件付き最大値問題について(0) | Nomal数列(2) | Nomal三角関数(0) | Nomalガウス記号(0) | Nomal式の値(2) | Nomal確率(0) | Nomal式の値(4) | Nomal外接円と内接円(1) | Nomal最小値(2) | Nomal最小値(2) |



■記事リスト / ▼下のスレッド
■52423 / 親記事)  極限の問題2
□投稿者/ むぎ 一般人(2回)-(2023/12/30(Sat) 17:08:57)
    この問題の解法を教えていただきたいです
1907×860 => 250×112

S__137854994_0.jpg
/125KB
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■52427 / ResNo.1)  Re[1]: 極限の問題2
□投稿者/ WIZ 一般人(15回)-(2023/12/30(Sat) 17:33:48)
    2023/12/30(Sat) 22:36:53 編集(投稿者)

    πを以下の様な無限級数と考えます。
    π = 3.1415・・・
    = 3+1/10+4/(10^2)+1/(10^3)+5/(10^4)+・・・

    ここでπを10進小数で表した時の各桁の数字を数列と見なし、
    a[0] = 3, a[1] = 1, a[2] = 4, a[3] = 1, a[4] = 5, ・・・
    とすれば、
    π = Σ[k=0,∞]{a[k]/(10^k)} = Σ[k=0,∞]{a[k](10^(-k))}
    と表せます。

    lim[n→∞]{[(10^n)π]/(10^n)}
    = lim[n→∞]{[(10^n)Σ[k=0,∞]{a[k](10^(-k))}]/(10^n)}
    = lim[n→∞]{[Σ[k=0,∞]{a[k](10^(n-k))}]/(10^n)}

    ガウスの記号の中の小数部分、つまり正で1未満となる部分は無視できますから、
    # 厳密には、lim[n→∞]{[Σ[k=0,∞]{a[k](10^(n-k))}]/(10^n)}において、
    # k > nの部分の和は、
    # Σ[k=n+1,∞]{a[k](10^(n-k))} < Σ[k=1,∞]{9*(10^(-k))} = 9*(1/10)/(1-(1/10)) = 1
    # なので、ガウスの記号内のΣ[k=n+1,∞]{a[k](10^(n-k))}の値は無視できるということです。

    lim[n→∞]{[Σ[k=0,∞]{a[k](10^(n-k))}]/(10^n)}
    = lim[n→∞]{(Σ[k=0,n]{a[k](10^(n-k))})/(10^n)}
    = lim[n→∞]{Σ[k=0,n]{a[k](10^(-k))}}
    = π
    となります。


引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■52421 / 親記事)  極限の問題
□投稿者/ むぎ 一般人(1回)-(2023/12/30(Sat) 17:03:21)
    写真の問題の解き方を教えていただきたいです。
1668×982 => 250×147

1703923401.jpg
/158KB
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■52425 / ResNo.1)  Re[1]: 極限の問題
□投稿者/ むぎ 一般人(6回)-(2023/12/30(Sat) 17:20:29)
    こちらの問題は間違っていました失礼しました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■52351 / 親記事)  多項式の整除
□投稿者/ Reddit 一般人(1回)-(2023/10/09(Mon) 20:00:00)
    P(x)を整数係数モニック多項式とする。
    このときどのような整数係数多項式f(x)に対しても
    ある整数係数モニック多項式F(x)が存在して
    F(f(x))はP(x)で割り切れるようにできる
    ということの証明を教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■52422 / ResNo.1)  Re[1]: 多項式の整除
□投稿者/ WIZ 一般人(14回)-(2023/12/30(Sat) 17:08:32)
    代数学の基本定理により、nを自然数、a[1]〜a[n]を複素数として、
    P(x) = Π[k=1, n](x-a[k])
    と書ける。
    P(x)が整数係数だから、a[1]〜a[n]の中に虚数があれば、その共役数もa[1]〜a[n]の中に含まれている。
    # P(x)が整数係数モニックだから、a[1]〜a[n]は代数的整数であり、
    # ノルムとシュプール(トレース)は有理数の整数である。

    すると、
    F(x) = Π[k=1, n](x-f(a[k]))
    とすれば、P(x) = 0の解は重複度も含めて全てF(f(x)) = 0の解であるので、
    F(f(x)) = Π[k=1, n](f(x)-f(a[k]))はP(x)で割り切れる。

    a[i]とa[j]が複素共役なら、f(x)が整数係数なのでf(a[i])とf(a[j])も複素共役となる。
    よって、F(x)は整数係数モニックであり、F(f(x))はモニックとは限らないが整数係数である。

    # 勘違いしてたらごめんなさい!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■52415 / 親記事)  三角形
□投稿者/ バイアス 一般人(1回)-(2023/12/28(Thu) 16:47:35)
    △OABにおいて角Oの大きさをθラジアンとする。
    2AB>(1-cosθ)(OA+OB)
    が成り立つことを示せ。

    教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■52420 / ResNo.1)  Re[1]: 三角形
□投稿者/ X 一般人(5回)-(2023/12/30(Sat) 07:59:07)
    2023/12/30(Sat) 09:09:48 編集(投稿者)

    2AB>(1-cosθ)(OA+OB)⇔2sinθ>(1-cosθ)(sinA+sinB) (∵)正弦定理
    ⇔2sin(A+B)>{1+cos(A+B)}(sinA+sinB) (A)
    ∴(A)を証明します。

    ((A)の左辺)-((A)の右辺)=2sin(A+B)-{1+cos(A+B)}(sinA+sinB)
    =2sin(A+B)-4sin{(A+B)/2}cos{(A-B)/2}{cos{(A+B)/2}}^2
    ((∵)和積の公式と半角の公式)
    =2sin(A+B)-2sin(A+B)cos{(A-B)/2}cos{(A+B)/2}
    =2sin(A+B){1-cos{(A-B)/2}cos{(A+B)/2}} (B)
    ここで
    0<A<π,0<B<π,0<θ<π (P)
    A+B+θ=π (Q)

    0<A+B<π
    なので
    sin(A+B)>0 (C)
    更に(P)(Q)より
    0<(A+B)/2<π/2
    -π/2<(A-B)/2<π/2
    又、
    (A+B)/2=(A-B)/2=0
    とはなりえないので
    cos{(A-B)/2}cos{(A+B)/2}<1 (D)
    (C)(D)より
    (B)>0
    よって(A)は成立します。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■52413 / 親記事)  三角数の和
□投稿者/ きんぴら5号 一般人(8回)-(2023/12/18(Mon) 16:11:18)
    ガウスの三角数定理「全ての自然数は3個以下の三角数の和に表せる」の証明ですが
    ガウス整数論の二次形式論(三元二次形式)から帰結される
    三平方和定理「mとkを非負整数とし(4^m)(8k+7)の形に表せない自然数は3個以下の自然数の平方の和に表せる」
    を根拠としているものしか見つけられませんでした。

    二次形式論を使用しない初等的な証明はないのでしょうか?
    (三角数定理または三平方和定理の初等的な証明は存在するのでしょうか?)

    もう一つ「全ての自然数が3個以下の三角数の和」かつ「自然数は乗法に閉じている」ことから
    「3個以下の三角数の和に表せる数は乗法に閉じている」といえると思います。
    このことを直接証明することはできるのでしょうか?

    n,u,a,b,c,v,p,q,rは非負整数としてT(n)=n(n+1)/2とおきます。
    u=T(a)+T(b)+T(c),v=T(p)+T(q)+T(r)ならば
    uv=T(x)+T(y)+T(z)となる非負整数x,y,zは存在すると言えるでしょうか?

    よろしくお願いいたします。
引用返信/返信 [メール受信/OFF]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター