数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalベクトルについて。(1) | Nomalベクトルについて。(0) | Nomalベクトル解析(1) | Nomal線形代数 証明(0) | Nomalベクトル解析のスカラー場について(2) | Nomalフーリエ展開とフーリエ変換(0) | Nomal加速度の次元と速度の次元(1) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal第2可算公理(0) | Nomalフェルマーの最終定理の簡単な証明9(25) | Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal無限和(2) | Nomal大学一年 線形代数(1) | Nomal大学で出された行列の課題がわかりません。(1) | Nomal広義積分(0) | Nomal 至急この問題を解説していただきたいです(0) | Nomal有理数(1) | Nomal論理関数(0) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal整数解(2) | Nomal数列の一般項(2) | Nomal統計学 二項分布(0) | Nomal連立微分方程式(1) | Nomal連立方程式(3) | Nomal全ての 整数解 等(0) | Nomal解析学(2) | Nomal行列のn乗(1) | Nomal色々な方法 で(0) | Nomal初期値問題(1) | Nomal解析学(1) | Nomal統計学 確率密度関数 分布関数 確率(0) | Nomal統計学についての質問(3) | Nomal対数尤度関数について!(0) | Nomal関数について(0) | Nomal最小公倍数とはちがいますが。。(2) | Nomal論理を教えて下さい(12) | Nomal三次方程式(2) | Nomal消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学(2) | Nomal線形代数(0) | Nomal極限(0) | Nomalボルスク・ウラムの定理の証明(0) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal素数(0) | Nomalデルタ関数に関する問題(0) | Nomal正三角形と半円(2) | Nomal不等式(2) | Nomal漸化式(0) | Nomal確率における情報(17) | Nomal統計学の質問(0) | Nomal確率変数(0) | Nomal複数の点によって構成される多角形を相互の距離情報から類推する方法(6) | Nomal正射影再び(笑)(4) | Nomal正射影:正三角形→2等辺三角形(2) | Nomal球面上の2つの円の重なっている部分の面積(0) | Nomal三角法(0) | Nomal大学数学です(0) | Nomal三角形(2) | Nomal数列の疑問(2) | Nomal素数積の評価〜ベルトラン・チェビシェフの定理(5) | Nomaleの極限(2) | Nomal積分(0) | Nomal四角形の極限(2) | Nomalベルトラン・チェビシェフの定理について。(2) | Nomalcosの積分の評価(0) | Nomal動点の確率(2) | Nomalsinの不等式(4) | Nomal極大と変曲(4) | Nomalピタゴラスの定理の簡単な証明(3) | Nomal複素積分の絶対値の評価(2) | Nomalリーマン積分可能性(3) | Nomalデデキントの切断による実数の構成(0) | Nomalベルトラン・チェビチェフの定理について。(0) | Nomalガウスの発散定理(0) | Nomal数列について。(0) | Nomal(1-x)^(-2)の展開式(2) | Nomal線形代数(0) | Nomal京大特色(1) | Nomal高校の範囲での証明(2) | Nomalこの表の見方を教えてください。(0) | Nomalヒルベルト空間(0) | Nomal$D_n$加群のフーリエ変換と関数のフーリエ変換との関係について(0) | Nomal群の問題(5) | Nomal合同式の計算(2) | Nomalプログラミング言語BASIC言語について。(14) | Nomal統計/区画幅について(3) | Nomal2変数関数の極値条件(2) | Nomal素数生成法について(0) | Nomalsupreme 偽物(0) | Nomal合同式の計算(4) | Nomal縦曲線について(0) | Nomal銃曲線における計画高ついて(0) | Nomal測量学について(0) | Nomal訂正です(1) |



■記事リスト / ▼下のスレッド
■50200 / 親記事)  数列について。
□投稿者/ コルム 一般人(1回)-(2019/12/27(Fri) 20:39:41)
    この問題は、数列の問題として成り立つのでしょうか?もし、変なところがあれば、訂正していただきたいのです。教えていただけると幸いなのですが。すみません。
    以下が問題です。その参考書を売ってもうないものですから、推測でしかないのですが。
    2つの数列の和SとTがある。SとTは共に等比数列で、数列Tは、数列Sの逆数である。
    このとき、S/T=T/Sを証明せよ。と言う問題のような感じだったのですが、どうでしょうか?教えていただけると幸いなのですが。すみません。

引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50197 / 親記事)  (1-x)^(-2)の展開式
□投稿者/ 3316 一般人(2回)-(2019/12/25(Wed) 23:40:36)
     一般の二項定理の展開式は
      (1+x)^a = 1 + ax + a(a-1)x^2/2! +a(a-1)(a-2)x^2/3! + ……
    なので
      (1-x)^(-2)
     = (1+(-x))^(-2)
     = 1 + (-2)(-x) + (-2)(-3)(-x)^2/2! +(-2)(-3)(-4)(-x)^3/3! + ……
     = 1 + 2x + 3x^2 + 4x^3 + ……

     つまり
      (1-x)^(-2) = 1 + 2x + 3x^2 + 4x^3 + ……
    でいいんですよね?

引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50198 / ResNo.1)  Re[1]: (1-x)^(-2)の展開式
□投稿者/ らすかる 一般人(1回)-(2019/12/26(Thu) 00:12:00)
    はい、大丈夫です。
    S=1+2x+3x^2+4x^3+…とおくと
    Sx=x+2x^2+3x^3+…なので
    S-Sx=1+x+x^2+x^3+…=1/(1-x)
    よってS(1-x)=1/(1-x)なので
    S=1/(1-x)^2となり、一致しますね。

引用返信/返信 [メール受信/OFF]
■50199 / ResNo.2)  Re[2]: (1-x)^(-2)の展開式
□投稿者/ 3316 一般人(3回)-(2019/12/26(Thu) 04:58:48)
     ありがとうございます。なるほど、うまい確認方法ですね。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50195 / 親記事)  線形代数
□投稿者/ popit 一般人(1回)-(2019/12/14(Sat) 10:23:00)
    U:R上n次元ベクトル空間
    V:R上m次元ベクトル空間
    R^n:n次元数ベクトル空間
    R^m:m次元数ベクトル空間

    Uの基:α={u_1,u_2,…,u_n}
    Vの基:β={v_1,v_2,…,v_m}}
    R^nの基:標準基{e_1,…,e_n}
    R^mの基:標準基{e'_1,…,e'_m}

    f :U→V
    F:R^n→R^m
    φ:U→R^n 、同型写像
    Ψ:V→R^m 、同型写像

    E_n(単位行列):αのR^nの標準基に関する表現行列
    E_m(単位行列):βのR^mの標準基に関する表現行列
    A:αのβに関するfの表現行列

    とする

    (1)F:=ψ○f○φ^(-1):R^n→R^mについてR^n,R^mの標準基に関する表現行列を求めなさい

    (2)r=dimKerF , r>0とし{p_1,…,p_r}をKerFの基底とするとき、
    {(u_1,…,u_n)p_1,…,(u_1,…,u_n)p_r}はKerfの基底であり、dimKerf=rであることを示しなさい

    (3)s=dimImF , s>0とし{q_1,…,q_s}をImFの基底とするとき、
    {(v_1,…,v_m)p_1,…,(v_1,…,v_m)p_s}はImfの基底であり、dimIm=sであることを示しなさい
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50190 / 親記事)  京大特色
□投稿者/ 紙 一般人(1回)-(2019/12/02(Mon) 23:28:22)
    整数k,nは0≦k<nを満たすとする。以下の設問に答えよ。
    (1) f(x)=x^n, g(x)=x^kとする。1≦x<yに対して次の不等式が成り立つことを示せ。
    |(g(x)-g(y))/(f(x)-f(y))|<1/x
    (2) f(x), g(x)を実数係数の整式で、f(x)の次数をn、g(x)の次数をkとする。
    f(x_0)が整数となるすべての実数x_0に対してg(x_0)も整数となるとき、
    g(x)はxによらず一定の整数値をとることを示せ。

    この問題なのですが、ネット上のいろんな議論を見てもいまいち(1)がうまく使えていないようです。
    (1)は(2)を解くための誘導と見てほぼ間違いないと思うのですが、どうでしょうか?
    (1)を(2)でスッキリと使う方法があれば知りたいです。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■50194 / ResNo.1)  Re[1]: 京大特色
□投稿者/ piyo 一般人(1回)-(2019/12/06(Fri) 12:07:32)
    ttps://math.nakaken88.com/problem/kyoto-u-t-2020-3/2/

    ここの解説はよくまとまっていると思います。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■50191 / 親記事)  高校の範囲での証明
□投稿者/ 窓々 一般人(1回)-(2019/12/02(Mon) 23:42:14)
    nは自然数、xは正の数のとき
    (x^n/n!)* e^(x/(n+1)) +Σ[k=0,n-1] x^k/k! ≦ e^x 
    の証明って高校ではどうやるんでしたっけ?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50192 / ResNo.1)  Re[1]: 高校の範囲での証明
□投稿者/ m 一般人(2回)-(2019/12/03(Tue) 12:18:14)
    2019/12/03(Tue) 12:23:08 編集(投稿者)
    2019/12/03(Tue) 12:22:03 編集(投稿者)

    (★ は証明略。)

    (左辺) - (右辺)
    とおきを帰納法で示す。

    で成り立つと仮定しで成り立つことを示す。

    だからを示せばok

    ★よりだから

    より
    (上の右辺)
    帰納法の仮定により

    だいぶ省略してるので補完してください。
引用返信/返信 [メール受信/OFF]
■50193 / ResNo.2)  Re[2]: 高校の範囲での証明
□投稿者/ 窓々 一般人(2回)-(2019/12/05(Thu) 12:43:35)
    有り難うございます。
    微分したものと帰納法でけっこう複雑だったのですね。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター