数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal数列について。(1) | Nomal数列について。(1) | Nomal数Aについて。(1) | Nomal線積分の問題(1) | Nomal複素解析学 留数計算(0) | Nomal3次関数について。(0) | Nomalベクトルについて。(7) | Nomalベクトルについて。(1) | Nomalベクトルについて。(5) | Nomal数列について。(14) | Nomal出かける時に気を遣わずに使用できるショルダーバッグ(0) | Nomalベクトルについて。(3) | Nomal数列について。(2) | Nomal微分方程式の問題(3) | Nomalベクトルについて。(1) | Nomal整数について。(1) | Nomal有理数(2) | Nomal放物線と円(1) | Nomalベクトルについて。(16) | Nomal数列の極限(1) | Nomal確率(6) | Nomalたけしのコマ大数学科の問題・・・(3) | Nomal数列(2) | Nomal整数の個数と極限(5) | Nomal数列(2) | Nomal極限(6) | Nomal統計学についての質問(2) | Nomal確率について。(1) | Nomalベクトル場の問題(1) | Nomal楕円面と直線の交点(1) | Nomal面積の最大値(1) | Nomalfw(0) | Nomalどうしても行列式の計算がミスが誰か助けて!!(0) | Nomal箱ひげ図について。(0) | Nomalベクトルについて。(2) | Nomal複素関数(0) | Nomal三角関数の面積(2) | Nomal二次方程式の標準形への変換(1) | Nomal等式(3) | Nomal自然数の逆数和(1) | Nomal五角形(2) | Nomal桁数(1) | Nomal対数不等式(2) | Nomal三角関数(2) | Nomal不等式(2) | Nomal三次方程式(5) | Nomal数列(0) | Nomal複素級数のコーシー積(6) | Nomal統計学(1) | Nomal確率(2) | Nomal三次方程式の解(4) | Nomal確率(5) | Nomal確率(1) | Nomal接する(2) | Nomal整数(0) | Nomal待ち行列(1) | Nomal放物線と接線(2) | Nomal確率(2) | Nomal直角二等辺三角形と円の共通部分(2) | Nomal一次不等式で表される領域の面積(2) | Nomal管理人さんへ(1) | Nomal判別式(2) | Nomal数列の周期と初項(2) | Nomal近似式(2) | Nomal模範解答の解説お願いします(1) | Nomalベクトルについて。(1) | Nomal互いに素(1) | Nomalベクトルについて。(1) | Nomal二次方程式について。(1) | Nomal図形について。(1) | Nomal埋め(1) | Nomalベクトル(1) | Nomal極値(1) | Nomal極値(1) | Nomal代数学の問題(1) | Nomal位相空間の問題(1) | Nomal剰余の定理について。(1) | Nomal積分計算(2) | Nomal広義積分の質問(4) | Nomal積分範囲の極限(2) | Nomal複素数計算(2) | Nomal複素数の実部と虚部の分け方がわかりません(3) | Nomal(削除)(0) | Nomal正接の値(2) | Nomal積分に関する質問(1) | Nomal順列(6) | Nomal確率(1) | Nomal直線の通過領域(1) | Nomal場合の数(3) | Nomal数学検定2級について。(0) | Nomal二次関数について。(4) | Nomal円(5) | Nomal円順列(2) | Nomal不等式(4) | Nomal複素数(1) | Nomal模範解答の解説お願いします(1) | Nomal三角関数(1) | Nomal確率(1) | NomalP(a,b,c) = P(c|b) * P(b|a) 成立条件?(0) | Nomal確率統計についてです(0) |



■記事リスト / ▼下のスレッド
■48348 / 親記事)  三角形
□投稿者/ 親日派 一般人(1回)-(2017/09/02(Sat) 11:44:16)
    △ABCの内部に点Pをとり、APとBCの交点をD、BPとCAの交点をE、CPとABの交点をFとする。
    △PEF=x、△PFD=y、△PDE=zのとき、△ABCの面積をx,y,zで表してほしいです。
    よろしくお願いします。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48336 / 親記事)  数列
□投稿者/ ダノッゾ 一般人(1回)-(2017/08/28(Mon) 23:21:53)
    a[0]=1, a[1]=1/6,
    a[n+1]=(a[n]+a[n-1])/6

    b[0]=2/3, b[1]=2/9,
    b[n+1]=(b[n]+b[n-1])/6 + (2/3)*a[n+1]

    b[n]をa[0]〜a[n]で表してほしいです。
    よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス8件(ResNo.4-8 表示)]
■48340 / ResNo.4)  Re[4]: 数列
□投稿者/ ダノッゾ 一般人(3回)-(2017/08/30(Wed) 10:09:03)
    それは一般項を求めずに示すことはできるのでしょうか?
引用返信/返信 [メール受信/OFF]
■48341 / ResNo.5)  Re[5]: 数列
□投稿者/ らすかる 一般人(3回)-(2017/08/30(Wed) 11:06:43)
    一般項を求めずに示す方法は思い付きません。私がもし
    「上の条件のもとでb[n]=(2/3)Σ[k=0〜n]a[k]a[n-k]であることを示せ」
    という問題を解くとしたら、一般項を求めずに示す方法を考えるよりも
    一般項を求めてしまった方が早そうなので、一般項を求めてから示します。
    ただし、他に条件があったり誘導問題があったりすればこの限りではありません。
    元の問題があるのでしたら、部分的に書くのではなく
    そのまま書いて頂いた方がよいかと思います。

引用返信/返信 [メール受信/OFF]
■48342 / ResNo.6)  Re[6]: 数列
□投稿者/ ダノッゾ 一般人(4回)-(2017/08/30(Wed) 15:42:02)
    座標平面で、点Pを次の規則で移動させていく。
    ----規則----
    1個のさいころを振り、出る目の数をtとして、
    t≦2ならばx軸の正方向にtだけ移動させ、
    t≧3ならばy軸の正方向に1だけ移動させる。
    ------------
    原点を出発したPが点(n,0)に到達する確率a[n]と、
    点(n,1)に到達する確率b[n]を求めよ。

    という問題の解説で、最後の行に補足的に
    (なお、b[n]=(2/3)Σ[k=0〜n]a[k]a[n-k])
    とだけ書いてあるのでどうやって導き出されたのか知りたかったのです。

    漸化式を使った解説なので漸化式から簡単に分かるのだろうと思ったのですが・・・
引用返信/返信 [メール受信/OFF]
■48343 / ResNo.7)  Re[7]: 数列
□投稿者/ らすかる 一般人(4回)-(2017/08/30(Wed) 18:14:05)
    それは式の変形で出したものではないと思います。
    (以下、簡単のため「x軸の正方向」を「右」、「y軸の正方向」を「上」と書きます。)
    b[n]
    =「右に0移動して上に1移動して右にn移動する確率」
    +「右に1移動して上に1移動して右にn-1移動する確率」
    +「右に2移動して上に1移動して右にn-2移動する確率」
    +「右に3移動して上に1移動して右にn-3移動する確率」
    +・・・
    +「右にn移動して上に1移動して右に0移動する確率」
    =a[0]・(2/3)・a[n]
    +a[1]・(2/3)・a[n-1]
    +a[2]・(2/3)・a[n-2]
    +a[3]・(2/3)・a[n-3]
    +・・・
    +a[n]・(2/3)・a[0]
    =(2/3)Σ[k=0〜n]a[k]a[n-k]
    となりますね。

引用返信/返信 [メール受信/OFF]
■48344 / ResNo.8)  Re[8]: 数列
□投稿者/ ダノッゾ 一般人(5回)-(2017/08/30(Wed) 19:40:58)
    なんと、漸化式の変形ではなくて確率の話だったんですね。
    読解力が足りなかったみたいです。
    教えていただき有難うございました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-8]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48334 / 親記事)  整式について。
□投稿者/ コルム 一般人(2回)-(2017/08/15(Tue) 00:41:54)
    L(x)は、P(x)+Q(x)と共通因数G(x)をもつ。と、L(x)とP(x)+Q(x)は共通因数G(x)をもつ。の違いがわかりません。教えていただけると幸いです。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48256 / 親記事)  直線と三角形
□投稿者/ デヴォン青木 一般人(1回)-(2017/07/28(Fri) 12:30:39)
    座標平面上において点A(1,2)を通る直線Lがx軸とy軸の正の部分と交わるとし、
    その交点をB,Cとするとき、△ABCの周の長さが最小になるように直線Lを定めよ。

    よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48257 / ResNo.1)  Re[1]: 直線と三角形
□投稿者/ らすかる 一般人(3回)-(2017/07/28(Fri) 14:19:06)
    A,B,Cは直線L上にあるため「△ABC」は存在しません。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■48254 / 親記事)  2変数関数
□投稿者/ KUU 一般人(1回)-(2017/07/27(Thu) 17:47:35)
    2変数関数の問題です!
    明日テストなのですがどうしてもわからなくて、、、
    詳しく解説いただけるととても有難いです、、!!><
320×104 => 250×81

1501145255.jpg
/13KB
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48255 / ResNo.1)  Re[1]: 2変数関数
□投稿者/ KUU 一般人(2回)-(2017/07/27(Thu) 17:53:05)
    一応ここにも載せておきます、!

    2変数関数 f:R^2→R、f(x1,x2)=1+x1^2-x2^2に対し、
    fの値の(2,3)における変化量と、fの(2,3)における微分との誤差、
    |f(2+h1,3+h2)−f(2,3)−DF(2,3)(h1,h2)|
    を求めよ
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター