数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
UpDate因数分解(1) | Nomal常用対数と桁数の関係(2) | Nomal(削除)(2) | Nomal行列を含む偏微分(0) | Nomalカタラン数(4) | Nomal無限級数(1) | Nomalスーパコピーvog.agvol.com/brand-70-c0.html ボーイロンドンブラドスパーピー(0) | Nomal大学数学 4次多項式 フェラーリの解法(0) | Nomalかんたんなフェルマーの最終定理の証明(19) | Nomal写像の問題です。(0) | Nomal離散数学 有向グラフの問題(0) | Nomal原始関数問題(1) | Nomal三角形と円の関係について(0) | Nomal|e^(icosθ)|、|e^(isinθ)|について(2) | Nomal大学数学 重積分(0) | Nomal簡単な論理式〜変な質問ですみませんが・・・(2) | Nomal割り算(1) | Nomal確率の問題です。大至急お願い致します(0) | Nomal整数解(7) | Nomal全ての 整数解 等(4) | Nomal完璧なのコピーbuytowe(0) | Nomal素数(1) | Nomal指数計算の練習(2) | Nomal微分積分(0) | Nomalテイラー展開(0) | Nomal合同式(1) | Nomalエルミート行列(0) | Nomal【大学数学】貨幣需要関数(0) | Nomal陰関数(0) | Nomalフェルマーの最終定理の証明(6) | Nomal統計学(0) | Nomalベクトル空間(0) | Nomal複素数の三角不等式(引き算)(2) | Nomal微分の問題(0) | Nomal体積(1) | Nomalフェルマーの最終定理の証明(z=x+rとおく方法)(1) | Nomal微分可能(2) | Nomalチェビシェフ 偏差値(0) | Nomal線形代数(1) | Nomal複素積分(2) | Nomalテイラー展開(2) | Nomal線形変換(1) | Nomal大学数学 線形代数 部分空間の証明(0) | Nomal証明問題(1) | Nomal一次結合と一次独立(0) | Nomal証明問題です(0) | Nomalz^5 = -1 を解く(2) | Nomal空間上の点(2) | Nomal複素関数の部分分数分解(4) | Nomal熱力学の本に出てくる式変形がわかりません。(0) | Nomalピタゴラス数の求め方(0) | Nomal二項定理を使ったピタゴラスの定理の証明(0) | Nomal二項定理を使ったフェルマーの最終定理の証明(0) | Nomal2次方程式(3) | Nomal数学A 図形の計算(0) | Nomalある式の微分における式変形について(2) | Nomal3次元空間の点(2) | Nomal線形代数」(0) | Nomal統計学の問題(0) | Nomal(削除)(3) | Nomal1/(z^2-1) を z = 1 でローラン展開する。(2) | Nomal無限等比級数について(2) | Nomalcosの不等式(2) | Nomal品質の服(0) | Nomal複素平面上の円(2) | Nomal積分の解き方について(0) | Nomal期待値(2) | Nomal3の個数(7) | Nomal複素数の関数(5) | Nomal分数関数の積分(2) | Nomalベクトルについて。(1) | Nomalベクトルについて。(0) | Nomalベクトル解析(1) | Nomal線形代数 証明(0) | Nomalベクトル解析のスカラー場について(2) | Nomalフーリエ展開とフーリエ変換(0) | Nomal加速度の次元と速度の次元(1) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal第2可算公理(0) | Nomalフェルマーの最終定理の簡単な証明9(25) | Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal無限和(2) | Nomal大学一年 線形代数(1) | Nomal大学で出された行列の課題がわかりません。(1) | Nomal広義積分(0) | Nomal 至急この問題を解説していただきたいです(0) | Nomal有理数(1) | Nomal論理関数(0) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal数列の一般項(2) | Nomal統計学 二項分布(0) | Nomal連立微分方程式(1) | Nomal連立方程式(3) |



■記事リスト / ▼下のスレッド
■50311 / 親記事)  漸化式
□投稿者/ シネマ 一般人(1回)-(2020/04/17(Fri) 18:11:39)
    任意の自然数に対して個の実数が定義されており、
    以下の関係をみたしている。



    任意の自然数に関して

    であることが分かっているとするとき、残りのの求め方を教えて下さい。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50288 / 親記事)  確率における情報
□投稿者/ 小池百合コロナ 一般人(1回)-(2020/04/14(Tue) 15:55:50)
    以下の問題を素直に解くとどのようになるか教えてほしいのです。
    よろしくお願いします。

    投げたり落としたりすると1/6の確率で割れる皿が何枚かある。
    百合子がその皿を両手に一枚ずつ持って遠くに投げたら、
    一枚は空を飛んでいたカラスに当たって落ちて割れてしまった。
    もう一枚は百合子からは見えないし割れたような音も聞こえないほど遠くに投げられたため、百合子は皿の状態が確認できない。

    (1) 遠くに投げられた皿も割れている確率はいくらか。
    (つまり、百合子が投げた皿が2枚とも割れている確率はいくらか。)

    後日、百合子は崖へ行き、両手に一枚ずつ持っている皿を崖から落とした。
    下のほうの様子を目で確認することは出来ないが、ガチャンと皿が割れる音がするのを百合子は聞いた。
    少なくとも一枚の皿は割れていると百合子は確信した。

    (2) 百合子が落とした皿が2枚とも割れている確率はいくらか。
引用返信/返信 [メール受信/OFF]

▽[全レス17件(ResNo.13-17 表示)]
■50306 / ResNo.13)  Re[13]: 確率における情報
□投稿者/ 小池百合コロナ 一般人(9回)-(2020/04/15(Wed) 16:36:21)
    有難うございます。

    つまり、以下の3つの問題は、本質的に同じことを問うていると
    考えていいということでしょうか?
    1.
    投げたり落としたりすると1/6の確率で割れる皿が何枚かある。
    百合子がその皿を両手に一枚ずつ持って同時に遠くに投げたら、
    一枚は空を飛んでいたカラスに当たって落ちて割れてしまった。
    カラスは2枚の皿から無作為にどちらかの皿を選び当たるものとする。
    もう一枚は百合子からは見えないし割れたような音も聞こえないほど遠くに投げられたため、百合子は皿の状態が確認できない。
    遠くに投げられた皿も割れている確率はいくらか。
    2.
    部屋の中に人Aと人Bが居て、大小2つのサイコロがある。
    AとBの間にはついたてがある。
    Aがサイコロを2個振る。(目はBには見えない)
    Aは2個のサイコロのうち、1個のサイコロの値をBに言う。
    Aはどちらのサイコロを選んで値を言うかは無作為に決める。
    Bの聞いた値が1であったとき、もう一つのサイコロも1が出ている確率はいくらか。
    3.
    部屋の中に人Aと人Bが居て、大小2つのサイコロがある。
    AとBの間にはついたてがある。
    Aがサイコロを2個振る。(目はBには見えない)
    Aは2個のサイコロのうち、1個のサイコロの値をBに言う。
    Bの聞いた値が1であったとき、もう一つのサイコロも1が出ている確率はいくらか。
引用返信/返信 [メール受信/OFF]
■50307 / ResNo.14)  Re[14]: 確率における情報
□投稿者/ らすかる 一般人(22回)-(2020/04/15(Wed) 16:38:40)
    はい、同じことです。
引用返信/返信 [メール受信/OFF]
■50308 / ResNo.15)  Re[15]: 確率における情報
□投稿者/ 小池百合コロナ 一般人(10回)-(2020/04/15(Wed) 17:50:21)
    有難うございます。本当に丁寧に教えていただいて感謝しております。

    1. 2. 3. は
    「どちらかの目が1とわかったが、他のサイコロの目も1である確率」
    である、ということでしょうか?

    そして
    「どちらかの目が1とわかったが、他のサイコロの目も1である確率」と
    「どちらかの目が1とわかった場合に他のサイコロの目も1である確率」
    は異なるということでしょうか?


    ■50295のただのぞろ目の問題は、
    >確率は聞いた目の値と関係なく1/6です。
    とのことなので、
    >「どちらかの目がわかった場合に他のサイコロの目も同じ値である確率」
    というよりもむしろ、
    「どちらかの目がわかったが、他のサイコロの目も同じ値である確率」
    なのでしょうか?
引用返信/返信 [メール受信/OFF]
■50309 / ResNo.16)  Re[16]: 確率における情報
□投稿者/ らすかる 一般人(23回)-(2020/04/15(Wed) 18:18:18)
    > 1. 2. 3. は
    > 「どちらかの目が1とわかったが、他のサイコロの目も1である確率」
    > である、ということでしょうか?

    違います。その言い回しにすると意味が変わってしまいます。
    「一つのサイコロを無作為に選んだときにその目が1だったが、
     他のサイコロの目も1である確率」と言わないと正しく解釈されません。
    「どちらかの目が1とわかった」と書くと
    「二つのうち少なくとも一つは1であった」という意味に解釈されてしまいます。
    従って
    > そして
    > 「どちらかの目が1とわかったが、他のサイコロの目も1である確率」と
    > 「どちらかの目が1とわかった場合に他のサイコロの目も1である確率」
    > は異なるということでしょうか?
    この二つは同じです。

引用返信/返信 [メール受信/OFF]
■50310 / ResNo.17)  Re[17]: 確率における情報
□投稿者/ 小池百合コロナ 一般人(11回)-(2020/04/15(Wed) 21:10:14)
    ありがとうございました。
    頭の中が少しずつ整理されてきました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-9] [10-17]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50299 / 親記事)  統計学の質問
□投稿者/ ななな 一般人(1回)-(2020/04/15(Wed) 09:51:41)
    Q1 公正な4枚のコインを投げて表の出る枚数をXとするとき、r.v. Xの確率分布を求めよ。

    Q2 r.v. Xの確率密度変数f(x)が次のように与えられている。

    f(x)= ax(2-x) (0≦x≦2),0 (その他)

    (1)aの値を求めよ。

    (2)分布関数F(x)を求め、そのグラフを書け。

    (3)P(-(1/4)≦X≦1)の値を求めよ。



    以上の問題が分かりません...。
    グラフを書く問題は、答えていただくのが難しいと思うので
    ヒントを頂けると嬉しいです...!
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50291 / 親記事)  確率変数
□投稿者/ 大学数学 一般人(1回)-(2020/04/15(Wed) 00:21:24)
    確率変数と標準偏差の問題です。

    答えは3番になります。
    計算方法を教えてください。

    よろしくお願いします
854×398 => 250×116

67468394-5BA0-4529-BEED-B081BF1F2C46.jpeg
/31KB
引用返信/返信 [メール受信/OFF]



■記事リスト / ▲上のスレッド
■50281 / 親記事)  複数の点によって構成される多角形を相互の距離情報から類推する方法
□投稿者/ めにぃ 一般人(1回)-(2020/04/13(Mon) 18:18:39)
    お世話になります。以下の点をご教授いただければ幸いです。

    今、4つ以上の複数の点があるとします。これらの点を囲碁のように、何かを囲うような形に、適当な間隔で並べてゆきます。1つの多角形(面)を構成するように並べ、ねじれた形に並べる事はしません。この時、すべての点のすべての組み合わせについて、点間の距離は分かっていますが、角度は分かりせん。

    このような条件で、各点を線分で結んだ図形(多角形)を類推する方法はあるでしょうか。無理な場合、どのような条件を付加すれば、類推可能になるでしょうか。

    よろしくお願いいたします。

455×326 => 250×179

1586769519.jpg
/24KB
引用返信/返信 [メール受信/OFF]

▽[全レス6件(ResNo.2-6 表示)]
■50283 / ResNo.2)  Re[2]: 複数の点によって構成される多角形を相互の距離情報から類推する方法
□投稿者/ めにぃ 一般人(2回)-(2020/04/13(Mon) 20:21:02)
    どれか1つの点を原点(0,0)とした時、他のすべての点の座標を知りたいと思います。

    添付図では説明上、各点をあるべき座標にプロットしていますが、実際には各々の点については他の点との直線距離が分かっているだけで、最初からこのような図形になっていると認識できているわけではありません。

    よろしくお願いします。


引用返信/返信 [メール受信/OFF]
■50284 / ResNo.3)  Re[3]: 複数の点によって構成される多角形を相互の距離情報から類推する方法
□投稿者/ らすかる 一般人(13回)-(2020/04/13(Mon) 22:22:57)
    裏返しだけはわかりませんが、それを除けば特定できると思います。
引用返信/返信 [メール受信/OFF]
■50285 / ResNo.4)  Re[4]: 複数の点によって構成される多角形を相互の距離情報から類推する方法
□投稿者/ めにぃ 一般人(3回)-(2020/04/13(Mon) 22:35:38)
    可能ですか!

    計算方法を教えていただければ幸いです。
引用返信/返信 [メール受信/OFF]
■50286 / ResNo.5)  Re[5]: 複数の点によって構成される多角形を相互の距離情報から類推する方法
□投稿者/ らすかる 一般人(14回)-(2020/04/14(Tue) 00:06:11)
    点を順にA,B,C,…とします。
    Aは原点にします。
    Bはx軸上の正の(AB,0)にとります。
    Cが直線AB上にないとき、Cをy>0の範囲にとることにすれば
    ただ一つに決まります。
    このCの位置の計算方法はいろいろありますが、
    三角関数を使ってよければ
    cos∠CAB=(AB^2+AC^2-BC^2)/(2AB・AC)
    によりcos∠CABを求め、sin∠CAB=√{1-(cos∠CAB)^2}により
    sin∠CABを求めてから
    (x,y)=(AC/AB)(B-A)
    C=A+(xcos∠CAB-ysin∠CAB,xsin∠CAB+ycos∠CAB)
    のように計算するのが簡単かと思います。
    次のDの位置はほぼ同様ですが、
    例えば△BCDを考えるときに直線CDのどちら側にあるかを
    判定する必要があります。
    まず上と同様に
    cos∠DBC=(BC^2+BD^2-CD^2)/(2BC・BD)
    sin∠DBC=√{1-(cos∠DBC)^2}
    (x,y)=(BD/BC)(C-B)
    D=B+(xcos∠DBC-ysin∠DBC,xsin∠DBC+ycos∠DBC)
    または
    D=B+(xcos∠DBC+ysin∠DBC,xsin∠DBC-ycos∠DBC)
    のように二つの候補を求めますが、
    どちらが適解かはADの距離で判定します。
    どちらで計算してもADと一致する場合は、どちらをとっても構いません。
    残りの点も同様ですが、
    最後の適解判定で既に決まっている点を判定できるまで順に使います。
    つまり上と同様にして△GHIからIの候補を二つ求まったとき、
    AIで判定できればそちら、判定できない場合はBIで判定、
    それでも判定できなければCIで判定、…、最後にFIで判定しても
    決まらないときはどちらでもOKです。
    (判定できないのはA〜Hが一直線に並んでいる場合だけです。)
    これを繰り返せばすべての点の位置が決まりますね。

    # 「AB」は線分ABの長さ、「BD」は線分BDの長さ、他も同様です。
    # B-Aのように単独で使った場合はその位置(ベクトル)です。
    # もし三角関数がわからない場合でも、cos∠CABをc、sin∠CABをs
    # のように単純な変数と考えて計算すればOKです。
    # cos∠CABが1または-1の場合はA,B,Cが一直線に並んでいますので
    # 計算を分ける必要があるかも知れません。
    # cos∠CABが1より大きいか-1より小さい場合は、点間の距離が正しくなく
    # AB,BC,CAが三角形の成立条件を満たしていません。
    # また、cos∠CABが1または-1に非常に近い値の場合、計算誤差により
    # 正しく求まらない可能性があります。
    # 複数の点が同じ位置だといろいろ不都合が起こりますので
    # それはないようにして下さい。

引用返信/返信 [メール受信/OFF]
■50287 / ResNo.6)  Re[6]: 複数の点によって構成される多角形を相互の距離情報から類推する方法
□投稿者/ めにぃ 一般人(4回)-(2020/04/14(Tue) 07:01:02)
    具体的で実戦的な答えをありがとうございました!

    またよろしくお願いいたします!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-6]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター