数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalフェルマーの最終定理の簡単な証明9(15) | Nomal期待値(0) | Nomalジャンケンポン(0) | Nomal1次分数関数(0) | Nomal三次関数と長方形(4) | Nomalx^3 + y^3 + z^3 = w^3(1) | Nomalコンデンサー回路(1) | Nomal屑スレを下げるための問題(4) | Nomaltan(1)(ラディアン) は有理数か(0) | Nomalラプラス変換 vs 演算子法(0) | Nomal有理数解を持たない三次方程式(0) | Nomal円柱の表面積(1) | Nomal三段論法(1) | Nomalド・モルガンの法則(0) | Nomal簡単な微分方程式(0) | Nomal3次関数について。(8) | Nomal必要十分条件の証明(3) | Nomal6÷2×3 = 9(1) | Nomalフェルマーの最終定理の簡単な証明8(74) | Nomal合コン(4) | Nomal基本的な確率(2) | Nomal同型写像(0) | Nomal正2n角形と確率(4) | Nomal中学生でも解けそうな入試問題001(1) | Nomalご教示ください(5) | Nomal階段行列の作り方(4) | Nomal統計学の問題です(0) | Nomal3の倍数(4) | Nomalラプラス方程式 境界条件(0) | Nomal対偶について(8) | Nomal偶数と奇数(8) | Nomalsinの関係(2) | Nomal2^(1/3)とωと√3(4) | Nomal supreme コート(0) | Nomalフェルマーの最終定理の簡単な証明7(101) | Nomal目的の形への行列の三角化(2) | Nomal(削除)(2) | Nomal等角写像の問題です。(2) | Nomal掲示板について。(1) | Nomalフェルマーの定理 RSA暗号(1) | Nomalフェルマーの最終定理の簡単な証明6(101) | Nomalオイラーの公式(3) | Nomalグッチンコピー(0) | Nomal6次方程式(2) | Nomalベクトル解析 証明(0) | Nomal位相数学、位相空間(0) | Nomal実生活に活きる確率(0) | Nomalオイラーの公式 導関数の定義(2) | Nomalオイラーの公式(3) | Nomal2階常微分方程式 (1) | Nomalオイラーの公式(0) | Nomalフェルマーの最終定理の簡単な証明5(101) | Nomal数学について。(1) | Nomal順列(4) | Nomal線形代数(1) | Nomal整数問題(1) | Nomalフェルマーの最終定理の簡単な証明4(101) | Nomal大小の比較(7) | Nomalシミュレーションについて(1) | Nomal期待値(2) | Nomal数学について。(1) | Nomalフーリエ変換の求め方(1) | Nomalisometric matrix,p-ノルムについて(0) | Nomalフェルマーの最終定理の簡単な証明3(76) | Nomald(cos^2θ)/dθ=と置けるような相似の図を見つけたいです!(0) | Nomal1/ cos^2θの微分を画像の図を用いて解きたい!(0) | Nomalラグランジュの剰余項(1) | Nomallog2とマクローリン展開についての証明(1) | Nomal極限を求める(大学数学)(1) | Nomal三角方程式(2) | Nomal確率密度(2) | Nomal方程式(2) | Nomal多項式の係数(1) | Nomalフェルマーの最終定理の簡単な証明2(101) | Nomal複素平面上の領域について(0) | Nomal数学検定について。(0) | Nomal複素解析(2) | Nomal定積分と体積(1) | Nomal極限値(3) | Nomal複素解析(7) | Nomalフェルマーの最終定理の簡単な証明(101) | Nomal高校推論の問題(1) | Nomal漸化式の項を減らす(4) | Nomalカーリングの7試合とは(4) | Nomal(削除)(3) | Nomalたぶん三角関数の等式(6) | Nomal確率、期待値の計算(0) | Nomal数学オリンピックの幾何の問題(2) | Nomal確率について。(1) | Nomal自然数の方程式(2) | Nomal単調増加数列(2) | Nomal数学について。(1) | Nomal平面図形について。(2) | Nomal平面図形について。(1) | Nomal確率について。(4) | Nomal確率について。(1) | Nomal確率について。(4) | Nomal確率について。(2) | Nomal統計について。(4) | Nomal整数解(1) |



■記事リスト / ▼下のスレッド
■48478 / 親記事)  積分に関する質問
□投稿者/ on 一般人(1回)-(2018/07/10(Tue) 21:14:30)
    ∫√(x^2+a)dx=1/2{x√(x^2+a)+alog|x+√(x^2+a)}+C(Cは積分定数)が成り立つことを証明しろ
    という問題の解き方を教えてください。t=x+√(x^2+a)と置くのかなと考えましたが、そこからの展開が分かりません。よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48483 / ResNo.1)  Re[1]: 積分に関する質問
□投稿者/ WIZ 一般人(1回)-(2018/07/13(Fri) 19:00:45)
    2018/07/13(Fri) 20:17:10 編集(投稿者)

    # 成り立つことの証明だけなら右辺を微分してみれば良いと思いますが。
    # 蛇足ですが、左辺の不定積分の計算方法は以下の通りです。

    べき乗演算子^は四則演算子より優先度が高いものとします。

    t = x+√(x^2+a)
    とおけば
    ⇒ (t-x)^2 = x^2+a
    ⇒ t^2-2tx = a
    ⇒ (t^2-a)/(2t) = (1/2)(t-a/t) = x
    ⇒ dx = (1/2)(1+a/(t^2))dt

    また
    √(x^2+a) = t-x = t-(1/2)(t-a/t) = (1/2)(t+a/t)

    問題の不定積分をIとおくと、
    I = ∫√(x^2+a)dx
    = ∫(1/2)(t+a/t)(1/2)(1+a/(t^2))dt
    = (1/4)∫{t+2a/t+(a^2)/(t^3)}dt
    = (1/4){(t^2)/2+2a*log(t)-(a^2)/(2(t^2))}+C

    ここで
    t^2 = {x+√(x^2+a)}^2 = x^2+2x√(x^2+a)+(x^2+a) = 2(x^2)+a+2x√(x^2+a)

    1/(t^2) = {2(x^2)+a-2x√(x^2+a)}/{{2(x^2)+a+2x√(x^2+a)}{2(x^2)+a-2x√(x^2+a)}}
    = {2(x^2)+a-2x√(x^2+a)}/{{2(x^2)+a}^2-{2x√(x^2+a)}^2}
    = {2(x^2)+a-2x√(x^2+a)}/{4(x^4)+4a(x^2)+a^2-4(x^2)(x^2+a)}
    = {2(x^2)+a-2x√(x^2+a)}/{a^2}

    よって、
    I = (1/4){{2(x^2)+a+2x√(x^2+a)}/2+2a*log(t)-(a^2){{2(x^2)+a-2x√(x^2+a)}/{a^2}}/2}+C
    = (1/4){(x^2)+a/2+x√(x^2+a)+2a*log(t)-{(x^2)+a/2-x√(x^2+a)}}+C
    = (1/4){2x√(x^2+a)+2a*log(t)}+C
    = (1/2){x√(x^2+a)+a*log(x+√(x^2+a))}+C
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48469 / 親記事)  順列
□投稿者/ waka 一般人(9回)-(2018/07/03(Tue) 15:43:19)
    いつもありがとうございます。
    「a,a,b,c,dの5個のも字から4個の文字を取り出して並べる方法は何通りあるか」
    という問題で、答えは
    1)aが2個あるとき
    4!/2! ×3=36
    2)a,b,c,d のとき
        4!=24

    1),2)より36+24=60通り

    と書いてありますが、5P4/2!でも60通りになるのですが、この式はあってますか?
引用返信/返信 [メール受信/OFF]

▽[全レス6件(ResNo.2-6 表示)]
■48472 / ResNo.2)  Re[2]: 順列
□投稿者/ waka 一般人(10回)-(2018/07/03(Tue) 17:33:52)
    No48471に返信(らすかるさんの記事)
    > その式で計算できるという根拠を論理的に正しく説明すれば正解になりますが、
    > 説明しなければ(できなければ)偶然合っただけとみなされて
    > 減点される可能性があります。
    > 説明できますか?
    >

     とりあえず、aを違う文字として考える。そして、最後に、aは同じなので入れ替えても変わらないので2!で割った。

    合ってますか。よろしくお願いします。
引用返信/返信 [メール受信/OFF]
■48473 / ResNo.3)  Re[3]: 順列
□投稿者/ らすかる 一般人(13回)-(2018/07/03(Tue) 19:56:25)
    aを1個しか使わないときに
    「aは同じなので入れ替えても変わらないので…」
    は意味が通じず、論理的に正しい説明ではないですね。

引用返信/返信 [メール受信/OFF]
■48474 / ResNo.4)  Re[4]: 順列
□投稿者/ waka 一般人(12回)-(2018/07/03(Tue) 21:26:42)
    aをa_1,a_2のように考えて、4文字を並べたとき、実際は区別しないので2で割っている。
    という説明はダメですか。
引用返信/返信 [メール受信/OFF]
■48475 / ResNo.5)  Re[5]: 順列
□投稿者/ らすかる 一般人(14回)-(2018/07/03(Tue) 21:50:22)
    aが2個の場合と1個の場合では少し意味が違いますよね。
    aが2個の場合はa_1とa_2を区別しないので2!で割る
    aが1個の場合はa_1を使うパターンとa_2を使うバターンが同じになるので2で割る
    よって2!=2なので5P4/2でよい
    などのように詳しく説明すれば、問題ないと思います。
    (細かいですが、2個使う時は2!、1個のときは2(または2C1)という違いがあります)
    例えばa,a,b,c,dの5文字から3文字取り出す場合は5P3/2とはできませんよね。
    4文字取り出す場合は5P4/2という式でOKであるということをきちんと説明すれば
    大丈夫だと思いますが、わざわざ説明するぐらいなら
    場合分けした簡潔な計算式の方が簡単ではないでしょうか。

引用返信/返信 [メール受信/OFF]
■48476 / ResNo.6)  Re[6]: 順列
□投稿者/ waka 一般人(13回)-(2018/07/03(Tue) 22:24:24)
    丁寧な解説ありがとうございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-6]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48467 / 親記事)  確率
□投稿者/ waka 一般人(8回)-(2018/07/02(Mon) 16:17:43)
    3個のさいころを1回ふったとき、出る目の最大値が3以上5以下となる確率を求めよ。という問題で、答は(5/6)^3-(2/6)^3という式で5以下の目から2以下の目を引いたことは理解できるのですが、3以上の目から6の目が出る場合を引くという発想だと、(4/6)^3-(1/6)^3という式でやると答えがあいません。何がだめですか?
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48468 / ResNo.1)  Re[1]: 確率
□投稿者/ らすかる 一般人(10回)-(2018/07/02(Mon) 19:16:19)
    (5/6)^3-(2/6)^3 という式は、
    「3個すべてのさいころが5以下である確率」−「3個すべてのさいころが2以下である確率」
    という意味です。
    同じように考えると
    (4/6)^3-(1/6)^3 という式は
    「3個すべてのさいころが3以上である確率」−「3個すべてのさいころが6である確率」
    であり、これは「最小値が3以上5以下」という意味になってしまいますね。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48464 / 親記事)  直線の通過領域
□投稿者/ waka 一般人(7回)-(2018/06/28(Thu) 13:27:28)
    いつもありがとうございます。
    以下の問題をお願いします。

    「tを実数として、平面上の直線 lt:tx+(1-t)y=t(1-t)を考える。
    tが0<t<1の範囲を動くとき、x>0、y>0の範囲でltが通過する部分を図示し、その面積を求めよ。」

    模範解答で
    0<t<1 より 1-t>0
    tx+(1-t)y=t(1-t) の両辺を 1-tで割ると

    {tx/(1-t)}+y=t
    よって y={tx/(t-1)}+t

    y>0 より
    {tx/(t-1)}+t>0
    ゆえに 0<t<1-x, 0<x<1

    dy/dt=-{x/(t-1)^2}+1
    dy/dt=0 とすると (t-1)^2 =x
    ゆえに t-1=-√x
    よって t=1-√x

    ここまではよいのですが・・・

    ここからグラフをかいているのですが、どうやってそのグラフが出てくるのかが分かりません。
    また、t=1-√xのときyは最大値y=(1-√x)^2となったこととグラフの関係はあるのですか。
    よろしくお願いします。

引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48465 / ResNo.1)  Re[1]: 直線の通過領域
□投稿者/ らすかる 一般人(9回)-(2018/06/28(Thu) 14:19:27)
    「そのグラフ」がどんなグラフかわかりませんのでグラフについては何とも言えませんが、
    ltが通過する部分はx>0かつy>0かつy≦(1-√x)^2となりますね。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■48460 / 親記事)  場合の数
□投稿者/ waka 一般人(5回)-(2018/06/25(Mon) 14:31:20)
    「3桁の整数nの百の位,十の位,一の位の数字をそれぞれa,b,cとするとき, a≧b≧cを満たす整数nは何個あるか」
    という問題で等号がなければ10C3と分かるのですが・・・。よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■48461 / ResNo.1)  Re[1]: 場合の数
□投稿者/ らすかる 一般人(7回)-(2018/06/25(Mon) 17:26:02)
    A=a+2,B=b+1,C=cとすると
    「9≧a≧b≧c≧0を満たす」
    ⇔「11≧A>B>C≧0を満たす」
    となりますので、12C3-1=219通りです。
    (-1は000の分)

引用返信/返信 [メール受信/OFF]
■48462 / ResNo.2)  Re[2]: 場合の数
□投稿者/ waka 一般人(6回)-(2018/06/25(Mon) 20:50:54)
    ありがとうございます。
    A=a+2, B=b+1, C=c という発想はどこからきたのですか?
引用返信/返信 [メール受信/OFF]
■48463 / ResNo.3)  Re[3]: 場合の数
□投稿者/ らすかる 一般人(8回)-(2018/06/25(Mon) 21:10:42)
    a,bが整数の時a≧b ⇔ a+1>bですから
    大きい方に1足せば不等号を≧→>に変えられますね。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター