数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalエルミート行列(0) | Nomal【大学数学】貨幣需要関数(0) | Nomal陰関数(0) | Nomalフェルマーの最終定理の証明(6) | Nomal統計学(0) | Nomalベクトル空間(0) | Nomal複素数の三角不等式(引き算)(2) | Nomal微分の問題(0) | Nomal体積(1) | Nomalフェルマーの最終定理の証明(z=x+rとおく方法)(1) | Nomal微分可能(2) | Nomalチェビシェフ 偏差値(0) | Nomal線形代数(1) | Nomal複素積分(2) | Nomalテイラー展開(2) | Nomal線形変換(1) | Nomal大学数学 線形代数 部分空間の証明(0) | Nomal証明問題(1) | Nomal一次結合と一次独立(0) | Nomal証明問題です(0) | Nomalz^5 = -1 を解く(2) | Nomal空間上の点(2) | Nomal複素関数の部分分数分解(4) | Nomal熱力学の本に出てくる式変形がわかりません。(0) | Nomalピタゴラス数の求め方(0) | Nomal二項定理を使ったピタゴラスの定理の証明(0) | Nomal二項定理を使ったフェルマーの最終定理の証明(0) | Nomal2次方程式(3) | Nomal数学A 図形の計算(0) | Nomalある式の微分における式変形について(2) | Nomal3次元空間の点(2) | Nomal線形代数」(0) | Nomal統計学の問題(0) | Nomal自然対数 e について(3) | Nomal1/(z^2-1) を z = 1 でローラン展開する。(2) | Nomal無限等比級数について(2) | Nomalcosの不等式(2) | Nomal品質の服(0) | Nomal複素平面上の円(2) | Nomal積分の解き方について(0) | Nomal期待値(2) | Nomal3の個数(7) | Nomal複素数の関数(5) | Nomal分数関数の積分(2) | Nomalベクトルについて。(1) | Nomalベクトルについて。(0) | Nomalベクトル解析(1) | Nomal線形代数 証明(0) | Nomalベクトル解析のスカラー場について(2) | Nomalフーリエ展開とフーリエ変換(0) | Nomal加速度の次元と速度の次元(1) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal第2可算公理(0) | Nomalフェルマーの最終定理の簡単な証明9(25) | Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal無限和(2) | Nomal大学一年 線形代数(1) | Nomal大学で出された行列の課題がわかりません。(1) | Nomal広義積分(0) | Nomal 至急この問題を解説していただきたいです(0) | Nomal有理数(1) | Nomal論理関数(0) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal整数解(2) | Nomal数列の一般項(2) | Nomal統計学 二項分布(0) | Nomal連立微分方程式(1) | Nomal連立方程式(3) | Nomal全ての 整数解 等(0) | Nomal解析学(2) | Nomal行列のn乗(1) | Nomal色々な方法 で(0) | Nomal初期値問題(1) | Nomal解析学(1) | Nomal統計学 確率密度関数 分布関数 確率(0) | Nomal統計学についての質問(3) | Nomal対数尤度関数について!(0) | Nomal関数について(0) | Nomal最小公倍数とはちがいますが。。(2) | Nomal論理を教えて下さい(12) | Nomal三次方程式(2) | Nomal消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学(2) | Nomal線形代数(0) | Nomal極限(0) | Nomalボルスク・ウラムの定理の証明(0) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal素数(0) | Nomalデルタ関数に関する問題(0) | Nomal正三角形と半円(2) | Nomal不等式(2) | Nomal漸化式(0) | Nomal確率における情報(17) | Nomal統計学の質問(0) |



■記事リスト / ▼下のスレッド
■50482 / 親記事)  3次元空間の点
□投稿者/ まるた 一般人(1回)-(2020/08/29(Sat) 17:52:16)
    3次元空間の点(x,y,z)について
    x+y+z<xyz または x^2+y^2+z^2≧xyz
    が成り立つことの証明を教えて下さい
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50484 / ResNo.1)  Re[1]: 3次元空間の点
□投稿者/ らすかる 一般人(12回)-(2020/08/29(Sat) 23:37:51)
    どちらも成り立たないと仮定すると
    x+y+z≧xyz かつ x^2+y^2+z^2<xyz
    を満たす(x,y,z)が存在することになる。
    これが成り立つならば、x,y,zすべて絶対値をとって正にしても成り立つので、
    x,y,zが正で成り立つものが存在しないことが言えれば十分。
    よってx,y,zは正と仮定する。
    三変数の相加相乗平均から
    x^2+y^2+z^2≧3[3]√(x^2y^2z^2)=3(xyz)^(2/3)
    なので
    xyz>x^2+y^2+z^2≧3(xyz)^(2/3)
    xyz>3(xyz)^(2/3) を解くと xyz>27 … (1)

    x+y+z≧xyz かつ x^2+y^2+z^2<xyz から
    x^2+y^2+z^2<x+y+z
    整理して
    (x-1/2)^2+(y-1/2)^2+(z-1/2)^2<3/4
    3/4<1なので、少なくとも
    (x-1/2)^2+(y-1/2)^2+(z-1/2)^2<1
    が成り立たなければならない。
    このとき0<x<3/2かつ0<y<3/2かつ0<z<3/2となるが、
    これは(1)を満たさないので矛盾。
    従ってx+y+z≧xyz かつ x^2+y^2+z^2<xyz
    を満たす(x,y,z)は存在しないので、
    x+y+z<xyz または x^2+y^2+z^2≧xyz
    が常に成り立つ。

引用返信/返信 [メール受信/OFF]
■50487 / ResNo.2)  Re[2]: 3次元空間の点
□投稿者/ まるた 一般人(2回)-(2020/08/30(Sun) 18:36:20)
    ありがとうございました
    よく分かりました

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50486 / 親記事)  線形代数」
□投稿者/ ゆう 一般人(1回)-(2020/08/30(Sun) 15:11:14)
    線形代数の問題です。
    この問題の解説お願いします。

664×230 => 250×86

S__13631493.jpg
/19KB
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50485 / 親記事)  統計学の問題
□投稿者/ くろ 一般人(1回)-(2020/08/30(Sun) 04:41:43)
    この問題がわかりません、教えてください
924×322 => 250×87

9D4CDF16-454F-44C0-BBAF-6FD651E4F620.jpeg
/23KB
引用返信/返信 [メール受信/ON]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50479 / 親記事)  自然対数 e について
□投稿者/ 湖畔 一般人(1回)-(2020/08/29(Sat) 12:05:53)
    n が自然数のとき
    e - (1+1/n)^n > ∫[0,1] x^(2n) e^x dx
    が成り立ちそうな気がするのですが、
    証明が分からないので教えてほしいです。
    よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■50480 / ResNo.1)  Re[1]: 自然対数 e について
□投稿者/ らすかる 一般人(10回)-(2020/08/29(Sat) 17:17:12)
    n=1のとき成り立たないと思います。
引用返信/返信 [メール受信/OFF]
■50481 / ResNo.2)  Re[2]: 自然対数 e について
□投稿者/ 湖畔 一般人(2回)-(2020/08/29(Sat) 17:44:46)
    失礼しました、n=1 ではひとしいですね。

    それ以外では成り立つでしょうか?
引用返信/返信 [メール受信/OFF]
■50483 / ResNo.3)  Re[3]: 自然対数 e について
□投稿者/ らすかる 一般人(11回)-(2020/08/29(Sat) 22:55:25)
    WolframAlphaでn=20まで計算したところ、n≧2では正の方から徐々に0に近づいていくようですので成り立ちそうではありますが、証明の方針が思い浮かびませんので(今のところ)証明できていません。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▲上のスレッド
■50476 / 親記事)  1/(z^2-1) を z = 1 でローラン展開する。
□投稿者/ Megumi 一般人(1回)-(2020/08/25(Tue) 20:18:57)
      1/(z^2-1) = 1/(z-1)*1/(z+1)
      1/(z+1) = 1/(z-1+2) = (1/2)( 1/(1+(z-1)/2) )
     ここからなんとかして 1/(z+1) を (z-1)^n で表したいのですが、行き詰まってしまいました。
     どうしたらいいでしょ?

引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50477 / ResNo.1)  Re[1]: 1/(z^2-1) を z = 1 でローラン展開する。
□投稿者/ WIZ 一般人(11回)-(2020/08/25(Tue) 21:32:11)
    1/(1+(z-1)/2) = 1-(z-1)/2+((z-1)/2)^2-((z-1)/2)^3+・・・ = Σ[k=0,∞]{(-(z-1)/2)^k}
    だから、
    1/(z^2-1) = (1/(z-1))(1/2)(1/(1+(z-1)/2)) = Σ[k=0,∞]{((1/2)^(k+1))((-1)^k)((z-1)^(k-1))}
    だと思います。
引用返信/返信 [メール受信/OFF]
■50478 / ResNo.2)  Re[2]: 1/(z^2-1) を z = 1 でローラン展開する。
□投稿者/ Megumi 一般人(2回)-(2020/08/25(Tue) 22:04:50)
     ありがとうございました。助かりました!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター