数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalα^52(2) | Nomalモスキーノコピー(0) | Nomal放物線の標準形(4) | Nomal循環小数(2) | Nomal四角形の辺の長さ(2) | Nomalコラッツ予想について(2) | Nomal三角形の角(3) | Nomal約数関数とオイラー関数(0) | Nomal有理数と素数(1) | Nomal円と曲線(3) | Nomalフィボナッチ数列について。(0) | Nomal導関数の定義について(2) | Nomal楕円曲線(1) | Nomallog(1+x)<√x(4) | Nomal円と3次関数(4) | NomalΣと積分の交換(3) | Nomalcos(1)とtan(1/2)(2) | Nomal合成数(2) | Nomal積分について(2) | Nomal因数分解(4) | Nomal2次関数(1) | Nomal常用対数と桁数の関係(2) | Nomal(削除)(2) | Nomal行列を含む偏微分(0) | Nomalカタラン数(4) | Nomal無限級数(1) | Nomalスーパコピーvog.agvol.com/brand-70-c0.html ボーイロンドンブラドスパーピー(0) | Nomal大学数学 4次多項式 フェラーリの解法(0) | Nomalかんたんなフェルマーの最終定理の証明(19) | Nomal写像の問題です。(0) | Nomal離散数学 有向グラフの問題(0) | Nomal原始関数問題(1) | Nomal三角形と円の関係について(0) | Nomal|e^(icosθ)|、|e^(isinθ)|について(2) | Nomal大学数学 重積分(0) | Nomal簡単な論理式〜変な質問ですみませんが・・・(2) | Nomal割り算(1) | Nomal確率の問題です。大至急お願い致します(0) | Nomal整数解(7) | Nomal全ての 整数解 等(4) | Nomal完璧なのコピーbuytowe(0) | Nomal素数(1) | Nomal指数計算の練習(2) | Nomal微分積分(0) | Nomalテイラー展開(0) | Nomal合同式(1) | Nomalエルミート行列(0) | Nomal【大学数学】貨幣需要関数(0) | Nomal陰関数(0) | Nomalフェルマーの最終定理の証明(6) | Nomal統計学(0) | Nomalベクトル空間(0) | Nomal複素数の三角不等式(引き算)(2) | Nomal微分の問題(0) | Nomal体積(1) | Nomalフェルマーの最終定理の証明(z=x+rとおく方法)(1) | Nomal微分可能(2) | Nomalチェビシェフ 偏差値(0) | Nomal線形代数(1) | Nomal複素積分(2) | Nomalテイラー展開(2) | Nomal線形変換(1) | Nomal大学数学 線形代数 部分空間の証明(0) | Nomal証明問題(1) | Nomal一次結合と一次独立(0) | Nomal証明問題です(0) | Nomalz^5 = -1 を解く(2) | Nomal空間上の点(2) | Nomal複素関数の部分分数分解(4) | Nomal熱力学の本に出てくる式変形がわかりません。(0) | Nomalピタゴラス数の求め方(0) | Nomal二項定理を使ったピタゴラスの定理の証明(0) | Nomal二項定理を使ったフェルマーの最終定理の証明(0) | Nomal2次方程式(3) | Nomal数学A 図形の計算(0) | Nomalある式の微分における式変形について(2) | Nomal3次元空間の点(2) | Nomal線形代数」(0) | Nomal統計学の問題(0) | Nomal(削除)(3) | Nomal1/(z^2-1) を z = 1 でローラン展開する。(2) | Nomal無限等比級数について(2) | Nomalcosの不等式(2) | Nomal品質の服(0) | Nomal複素平面上の円(2) | Nomal積分の解き方について(0) | Nomal期待値(2) | Nomal3の個数(7) | Nomal複素数の関数(5) | Nomal分数関数の積分(2) | Nomalベクトルについて。(1) | Nomalベクトルについて。(0) | Nomalベクトル解析(1) | Nomal線形代数 証明(0) | Nomalベクトル解析のスカラー場について(2) | Nomalフーリエ展開とフーリエ変換(0) | Nomal加速度の次元と速度の次元(1) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal第2可算公理(0) | Nomalフェルマーの最終定理の簡単な証明9(25) |



■記事リスト / ▼下のスレッド
■50337 / 親記事)  論理を教えて下さい
□投稿者/ クレア 一般人(1回)-(2020/05/27(Wed) 13:38:37)
    論理的なことを教えてほしいのですが、よろしくお願いします。

    ある掲示板のルールで
    一般人への誹謗中傷は禁止である
    というものがあったとします。
    誰かが「芸能人への誹謗中傷はどうなのか」と質問してきたとき、
    このルールは芸能人への誹謗中傷については何も述べていないから
    (1) 芸能人への誹謗中傷は禁止であるとも禁止でないとも言えない
    と私は考えたのですが、
    他の方が激しく
    (2) 芸能人への誹謗中傷は禁止されていない
    と主張していて、頭がこんがらがってしまいました。
    1と2はどちらが正しいのでしょうか?

    芸能人と一般人は排反と考えていただいて大丈夫です。
引用返信/返信 [メール受信/OFF]

▽[全レス12件(ResNo.8-12 表示)]
■50345 / ResNo.8)  Re[8]: 論理を教えて下さい
□投稿者/ クレア 一般人(5回)-(2020/05/27(Wed) 17:50:14)
    有難うございます。
    論理だけで考えるのがなんとも難しいと痛感しました…。

    純粋に論理的に考えるのに挑戦するために、上の骨格だけ利用して次の問題を考えるとします。


    AならばBである
    という命題があったとします。
    誰かが「CならばBである、はどうなのか」と質問してきたとき、
    このAならばBであるという命題はCならばBであるについては何も述べていないから
    (1) CならばBであるともCならばBでないとも言えない
    と私は考えたのですが、
    他の方が激しく
    (2) CならばBでない
    と主張していて、頭がこんがらがってしまいました。
    1と2はどちらが正しいのでしょうか?


    具体的なことを全て消しながら書いているとどうしても1が正しいと思ってしまうのですが
    もしかしてこの抽象的な骨格だけだと1が正しいですか?
引用返信/返信 [メール受信/OFF]
■50346 / ResNo.9)  Re[9]: 論理を教えて下さい
□投稿者/ らすかる 一般人(8回)-(2020/05/27(Wed) 17:58:15)
    1が正しく、2は間違いです。
    Cについて何も言っていませんので「CならばB」である可能性もあり、
    2はそれを否定してしまっていますので間違いです。

引用返信/返信 [メール受信/OFF]
■50347 / ResNo.10)  Re[10]: 論理を教えて下さい
□投稿者/ クレア 一般人(6回)-(2020/05/27(Wed) 21:31:50)
    有り難うございます。
    考えるのが遅くてすみません。

    あれこれ考えて、ルールというものが三段論法の補助になっていると考えたのが合っているでしょうか?
    つまり、ルールにない ならば 禁止ではない ということが隠れた前提になっているのだと考えたのですが…

    何も前提がない状態だと
    一般人への誹謗中傷ならば禁止である
    から
    芸能人への誹謗中傷ならば禁止でない
    は導けないのですが、

    誹謗中傷に関するルールが
    一般人への誹謗中傷ならば禁止である
    しかない場合などは、
    芸能人への誹謗中傷ならばルールにない
    (ルールにないならば禁止でない) ← 隠れた前提!?
    ∴芸能人への誹謗中傷ならば禁止でない
    が導ける、と考えてよいのでしょうか?
引用返信/返信 [メール受信/OFF]
■50348 / ResNo.11)  Re[11]: 論理を教えて下さい
□投稿者/ らすかる 一般人(9回)-(2020/05/27(Wed) 22:29:13)
    はい、全くその通りです。
引用返信/返信 [メール受信/OFF]
■50349 / ResNo.12)  Re[12]: 論理を教えて下さい
□投稿者/ クレア 一般人(7回)-(2020/05/27(Wed) 23:20:25)
    有難うございました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-9] [10-12]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50329 / 親記事)  三次方程式
□投稿者/ ニーレンベルギア 一般人(1回)-(2020/05/23(Sat) 02:00:32)
    x^3-2x+√(7√3 -12)=0
    の解き方を教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50330 / ResNo.1)  Re[1]: 三次方程式
□投稿者/ らすかる 一般人(1回)-(2020/05/23(Sat) 04:34:02)
    √(7√3-12)=(√√3)√(7-4√3)=(√√3)(2-√3) ※√√3=3^(1/4)
    √√3=aとおくと√(7√3-12)=a(2-a^2)=-a^3+2a
    x^3-2x+√(7√3-12)=0
    x^3-2x-a^3+2a=0
    (x^3-a^3)-2(x-a)=0
    (x-a)(x^2+ax+a^2)-2(x-a)=0
    (x-a)(x^2+ax+a^2-2)=0
    ∴x=a,{-a±√(8-3a^2)}/2=√√3,{-√√3±√(8-3√3)}/2

引用返信/返信 [メール受信/OFF]
■50334 / ResNo.2)  Re[2]: 三次方程式
□投稿者/ ニーレンベルギア 一般人(2回)-(2020/05/23(Sat) 11:16:22)
    有り難うございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50331 / 親記事)  消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学
□投稿者/ 疑問 一般人(1回)-(2020/05/23(Sat) 06:45:31)
    お疲れ様です。相当素人です。消火栓内径65mmから100立米のタンクに入れるのに何分かかるか計算したいのですが、まず、消火栓が設置してある本設管路内径150mmの水圧は0.5mpa。そこから分岐してある消火栓内径65mm。分岐から、消火栓と消火栓ホース内径65mmの長さは10m。本設管路150mmの平均流速は0.2m/sに抑えたいので、0.2m/sとする。消火栓からの流量をどれくらいにしたら、本設菅路の流速が0.2m/sに抑えることが出来るか。そして、消火栓からの流量がある程度をわかれば、タンクに入れるのにかかる時間がわかるはずなので。消火栓とか消火栓ホースの損失は無視して問題はありません。それはそれで、考えないといけないので。よろしくお願いいたします。

引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50332 / ResNo.1)  Re[1]: 消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学
□投稿者/ らすかる 一般人(2回)-(2020/05/23(Sat) 06:51:04)
    流体力学とか全くわかりませんが、数学的に単純に考えると
    消火栓ホース内径65mmの断面積は約13273mm^2
    本設管路150mmの断面積は約70686mm^2
    これは消火栓ホースの断面積の5.325倍なので
    流速を0.2×5.325=1.065m/sにすればよいと思います。

引用返信/返信 [メール受信/OFF]
■50333 / ResNo.2)  Re[2]: 消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学
□投稿者/ 疑問 一般人(2回)-(2020/05/23(Sat) 09:59:08)
    まさにそのとおりですね。
    それを流量に直す公式を使えば答えが出ます。
    疑問が消えました。
    本当にありがとうございました。


    No50332に返信(らすかるさんの記事)
    > 流体力学とか全くわかりませんが、数学的に単純に考えると
    > 消火栓ホース内径65mmの断面積は約13273mm^2
    > 本設管路150mmの断面積は約70686mm^2
    > これは消火栓ホースの断面積の5.325倍なので
    > 流速を0.2×5.325=1.065m/sにすればよいと思います。
    >
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50328 / 親記事)  線形代数
□投稿者/ 坂口暁也 一般人(1回)-(2020/05/19(Tue) 11:23:09)
    線形代数の問題です。解答解説をおねがいします。
1152×152 => 250×32

1589854989.png
/74KB
引用返信/返信 [メール受信/OFF]



■記事リスト / ▲上のスレッド
■50327 / 親記事)  極限
□投稿者/ 風邪 一般人(1回)-(2020/05/17(Sun) 16:12:02)
    n→∞ an→α≠0のとき
    ∃δ>0;∀n∈N;|an|>=δ を証明してください
引用返信/返信 [メール受信/OFF]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター