数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal高校の範囲での証明(2) | Nomal京大特色(1) | Nomalこの表の見方を教えてください。(0) | Nomalヒルベルト空間(0) | Nomal$D_n$加群のフーリエ変換と関数のフーリエ変換との関係について(0) | Nomal群の問題(5) | Nomal合同式の計算(2) | Nomal統計/区画幅について(3) | Nomalプログラミング言語BASIC言語について。(14) | Nomal2変数関数の極値条件(2) | Nomal素数生成法について(0) | Nomal合同式の計算(4) | Nomal縦曲線について(0) | Nomal銃曲線における計画高ついて(0) | Nomal測量学について(0) | Nomal訂正です(1) | Nomal対数の取り方、シグモイド、ロジスティック関数(0) | Nomal緩和曲線の開始位置と終了地点および途中の高さxについて(0) | Nomalf'(x) の増減の判定方法(3) | Nomal三角形と内接円について改(1) | Nomal三角形と内接円について。(1) | Nomal増減表の作り方(6) | Nomal三葉曲線の長さについて(2) | Nomal4次関数(3) | Nomal約数を mod 13 で見る(1) | Nomal自作問題(3) | Nomalsupreme 偽物(0) | Nomal(削除)(0) | Nomalケプラー方程式による惑星の会合計算(0) | Nomal追いかけ算 惑星会合時期(1) | Nomal担当者の時間割(2) | Nomal(削除)(0) | Nomalフェルマーの最終定理の簡単な証明9(23) | Nomal必要十分条件の証明(3) | Nomal合コン(4) | Nomal三次関数と長方形(4) | Nomal同型写像(0) | Nomal屑スレを下げるための問題(2) | Nomal基本的な確率(2) | Nomal中学生でも解けそうな入試問題001(1) | Nomal正2n角形と確率(4) | Nomal階段行列の作り方(4) | Nomalご教示ください(5) | Nomal統計学の問題です(0) | Nomal3の倍数(4) | Nomalラプラス方程式 境界条件(0) | Nomal対偶について(8) | Nomalsinの関係(2) | Nomal偶数と奇数(8) | Nomal2^(1/3)とωと√3(4) | Nomal supreme コート(0) | Nomalフェルマーの最終定理の簡単な証明8(74) | Nomal目的の形への行列の三角化(2) | Nomal掲示板について。(1) | Nomalフェルマーの定理 RSA暗号(1) | Nomal等角写像の問題です。(2) | Nomalフェルマーの最終定理の簡単な証明7(101) | Nomalグッチンコピー(0) | Nomal6次方程式(2) | Nomalベクトル解析 証明(0) | Nomal位相数学、位相空間(0) | Nomal実生活に活きる確率(0) | Nomalオイラーの公式 導関数の定義(2) | Nomal2階常微分方程式 (1) | Nomalオイラーの公式(3) | Nomalオイラーの公式(0) | Nomalオイラーの公式(3) | Nomalフェルマーの最終定理の簡単な証明6(101) | Nomal数学について。(1) | Nomal線形代数(1) | Nomal整数問題(1) | Nomalフェルマーの最終定理の簡単な証明5(101) | Nomal順列(4) | Nomal大小の比較(7) | Nomalシミュレーションについて(1) | Nomalフェルマーの最終定理の簡単な証明4(101) | Nomal数学について。(1) | Nomalフーリエ変換の求め方(1) | Nomalisometric matrix,p-ノルムについて(0) | Nomald(cos^2θ)/dθ=と置けるような相似の図を見つけたいです!(0) | Nomal1/ cos^2θの微分を画像の図を用いて解きたい!(0) | Nomalラグランジュの剰余項(1) | Nomallog2とマクローリン展開についての証明(1) | Nomal極限を求める(大学数学)(1) | Nomal期待値(2) | Nomal確率密度(2) | Nomal三角方程式(2) | Nomal方程式(2) | Nomal多項式の係数(1) | Nomalフェルマーの最終定理の簡単な証明3(76) | Nomal複素平面上の領域について(0) | Nomal数学検定について。(0) | Nomal複素解析(2) | Nomal定積分と体積(1) | Nomal極限値(3) | Nomal複素解析(7) | Nomalフェルマーの最終定理の簡単な証明2(101) | Nomal高校推論の問題(1) | Nomal漸化式の項を減らす(4) | Nomalカーリングの7試合とは(4) | Nomal確率、期待値の計算(0) |



■記事リスト / ▼下のスレッド
■50191 / 親記事)  高校の範囲での証明
□投稿者/ 窓々 一般人(1回)-(2019/12/02(Mon) 23:42:14)
    nは自然数、xは正の数のとき
    (x^n/n!)* e^(x/(n+1)) +Σ[k=0,n-1] x^k/k! ≦ e^x 
    の証明って高校ではどうやるんでしたっけ?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50192 / ResNo.1)  Re[1]: 高校の範囲での証明
□投稿者/ m 一般人(2回)-(2019/12/03(Tue) 12:18:14)
    2019/12/03(Tue) 12:23:08 編集(投稿者)
    2019/12/03(Tue) 12:22:03 編集(投稿者)

    (★ は証明略。)

    (左辺) - (右辺)
    とおきを帰納法で示す。

    で成り立つと仮定しで成り立つことを示す。

    だからを示せばok

    ★よりだから

    より
    (上の右辺)
    帰納法の仮定により

    だいぶ省略してるので補完してください。
引用返信/返信 [メール受信/OFF]
■50193 / ResNo.2)  Re[2]: 高校の範囲での証明
□投稿者/ 窓々 一般人(2回)-(2019/12/05(Thu) 12:43:35)
    有り難うございます。
    微分したものと帰納法でけっこう複雑だったのですね。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50190 / 親記事)  京大特色
□投稿者/ 紙 一般人(1回)-(2019/12/02(Mon) 23:28:22)
    整数k,nは0≦k<nを満たすとする。以下の設問に答えよ。
    (1) f(x)=x^n, g(x)=x^kとする。1≦x<yに対して次の不等式が成り立つことを示せ。
    |(g(x)-g(y))/(f(x)-f(y))|<1/x
    (2) f(x), g(x)を実数係数の整式で、f(x)の次数をn、g(x)の次数をkとする。
    f(x_0)が整数となるすべての実数x_0に対してg(x_0)も整数となるとき、
    g(x)はxによらず一定の整数値をとることを示せ。

    この問題なのですが、ネット上のいろんな議論を見てもいまいち(1)がうまく使えていないようです。
    (1)は(2)を解くための誘導と見てほぼ間違いないと思うのですが、どうでしょうか?
    (1)を(2)でスッキリと使う方法があれば知りたいです。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■50194 / ResNo.1)  Re[1]: 京大特色
□投稿者/ piyo 一般人(1回)-(2019/12/06(Fri) 12:07:32)
    ttps://math.nakaken88.com/problem/kyoto-u-t-2020-3/2/

    ここの解説はよくまとまっていると思います。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50188 / 親記事)  この表の見方を教えてください。
□投稿者/ aa 一般人(1回)-(2019/11/27(Wed) 20:42:33)
    この表の見方を教えてください。
4718592×4292935818 => 0×250

IMG_5374.PNG
/51KB
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50187 / 親記事)  ヒルベルト空間
□投稿者/ はう 一般人(1回)-(2019/11/27(Wed) 17:09:09)
    どなたか解答を作っていただけませんか・・・?

1574842149.jpeg
/26KB
引用返信/返信 [メール受信/OFF]



■記事リスト / ▲上のスレッド
■50186 / 親記事)  $D_n$加群のフーリエ変換と関数のフーリエ変換との関係について
□投稿者/ おじゃん 一般人(1回)-(2019/11/25(Mon) 20:16:25)
    変数のWeyl代数とし,を変数に関する微分作用素とします.
    加群に対し,そのフーリエ変換に対するの作用
    ,

    と定めた左加群として定義されています.
    つまり,フーリエ変換前と後で
    ,

    という対応関係があるように見えます.

    ところが,例えば1変数関数のフーリエ変換を考えると,
    ,

    となり,
    ,

    という対応関係があるように見え,加群のフーリエ変換を考えたときには出てこなかった虚数単位が出てきてしまいます.

    これら2種類のフーリエ変換は何らかの関係で結び付けられているのでしょうか?
    もしくは,似たような変換なのでフーリエという名前がついているだけで,実際に行っている操作には何ら対応関係は無いのでしょうか?
    お答えいただけると幸いです.
引用返信/返信 [メール受信/ON]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター