数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
UpDate三次方程式(5) | New数列(0) | Newベクトルについて。(0) | Nomal不等式(0) | Nomal複素級数のコーシー積(6) | Nomal統計学(1) | Nomal確率(2) | Nomal三次方程式の解(4) | Nomal確率(5) | Nomal確率(1) | Nomal接する(2) | Nomal整数(0) | Nomal待ち行列(1) | Nomal放物線と接線(2) | Nomal確率(2) | Nomal直角二等辺三角形と円の共通部分(2) | Nomal一次不等式で表される領域の面積(2) | Nomal管理人さんへ(1) | Nomal判別式(2) | Nomal数列の周期と初項(2) | Nomal近似式(2) | Nomal模範解答の解説お願いします(1) | Nomalベクトルについて。(1) | Nomal互いに素(1) | Nomalベクトルについて。(1) | Nomal二次方程式について。(1) | Nomal図形について。(1) | Nomal埋め(1) | Nomalベクトル(1) | Nomal極値(1) | Nomal極値(1) | Nomal代数学の問題(1) | Nomal位相空間の問題(1) | Nomal剰余の定理について。(1) | Nomal積分計算(2) | Nomal広義積分の質問(4) | Nomal積分範囲の極限(2) | Nomal複素数計算(2) | Nomal複素数の実部と虚部の分け方がわかりません(3) | Nomal(削除)(0) | Nomal正接の値(2) | Nomal積分に関する質問(1) | Nomal順列(6) | Nomal確率(1) | Nomal直線の通過領域(1) | Nomal場合の数(3) | Nomal数学検定2級について。(0) | Nomal二次関数について。(4) | Nomal円(5) | Nomal円順列(2) | Nomal不等式(4) | Nomal複素数(1) | Nomal模範解答の解説お願いします(1) | Nomal三角関数(1) | Nomal確率(1) | NomalP(a,b,c) = P(c|b) * P(b|a) 成立条件?(0) | Nomal確率統計についてです(0) | Nomal不等式(4) | Nomal自然数の和と倍数の性質(0) | Nomal円環(3) | Nomal三角関数(1) | Nomal微分(2) | Nomal√3 v.s. √-3(2) | Nomal多項式の解と係数(0) | Nomal有理数と整数(2) | Nomal曲線の長さ(1) | Nomal数的推理(3) | Nomal数的推理(2) | Nomal連立(1) | Nomal複素数(3) | Nomal2階導関数・第2次導関数(0) | Nomal微分(1) | Nomal数学では循環する定義・公理は許されていますか(1) | Nomal実数解の取り得る値の範囲(2) | Nomalクロム ハーツ 首饰 コピー(0) | Nomalベクトル場の問題(0) | Nomal自然数の謎(4) | Nomalバルビエの定理証明(1) | Nomal三角形(0) | Nomal数列(8) | Nomal整式について。(0) | Nomal確率について。(0) | Nomal直線と三角形(1) | Nomal2変数関数(1) | Nomal平行四辺形(2) | Nomal計算量について(1) | Nomal昔の東大模試の数列(2) | Nomal準同型写像(3) | Nomal互いに素(2) | Nomal数列の最大項(1) | Nomal数列とmod(2) | Nomal数列とmod(7) | Nomal2^(1/3)-1(0) | Nomalどう並べ替えても一部を取り出しても素数(5) | Nomal漸化式(10) | Nomal数と式(2) | Nomal不等式(2) | Nomal放物線と円(3) | Nomal四角形(3) | Nomal平方数の和(mod p)、個数(0) |



■記事リスト / ▼下のスレッド
■48827 / 親記事)  三次方程式
□投稿者/ 大阪なほみ 一般人(2回)-(2018/09/22(Sat) 16:04:38)
    実数a,b,cが0<a<c<b<1を満たすとき、
    x^3-ax^2+(b-3)x+2a-c=0
    の解は全て絶対値が2以下であることを示せ。

    教えて下さい。よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス5件(ResNo.1-5 表示)]
■48828 / ResNo.1)  Re[1]: 三次方程式
□投稿者/ らすかる 一般人(15回)-(2018/09/22(Sat) 18:19:08)
    x>2のとき
    x^3-ax^2+(b-3)x+2a-c=(x-2)(x^2+x-1)+(x^2-2)(1-a)+b(x-1)+(b-c)>0
    x<-2のとき
    x^3-ax^2+(b-3)x+2a-c=(x+2){x^2+(1-x)}-(x+1)^2-ax^2+bx-(c-a)-(1-a)<0
    ∴解の絶対値は2以下

引用返信/返信 [メール受信/OFF]
■48829 / ResNo.2)  Re[2]: 三次方程式
□投稿者/ 大阪なほみ 一般人(3回)-(2018/09/22(Sat) 20:07:36)
    ひとつ質問よろしいでしょうか。
    虚数解をもつことはないのでしょうか?
引用返信/返信 [メール受信/OFF]
■48831 / ResNo.3)  Re[3]: 三次方程式
□投稿者/ らすかる 一般人(16回)-(2018/09/22(Sat) 23:28:17)
    ごめんなさい、勝手に実数範囲と思い込んでいました。
    でも虚数解を持つかどうか調べたところ、
    この方程式はたまたま全ての解が実数ですので
    (そのことを示す必要はありますが)大丈夫でした。

引用返信/返信 [メール受信/OFF]
■48836 / ResNo.4)  Re[4]: 三次方程式
□投稿者/ らすかる 一般人(21回)-(2018/09/23(Sun) 07:31:02)
    解答を以下のように訂正します。

    f(x)=x^3-ax^2+(b-3)x+2a-cとすると
    f(-2)=-(2a+2b+c+2)<0
    f(-1)=a+(1-b)+(1-c)>0
    f(1)=-{(1-a)+(1-b)+c}<0
    f(2)=2(1-a)+(b-c)+b>0
    なので、f(x)=0は(-2,-1),(-1,1),(1,2)の各区間内に実数解を一つずつ持つ。
    従ってf(x)=0の解は全て絶対値が2以下。

引用返信/返信 [メール受信/OFF]
■48837 / ResNo.5)  Re[5]: 三次方程式
□投稿者/ 大阪なほみ 一般人(4回)-(2018/09/23(Sun) 11:36:47)
    ありがとうございます!!
    こうやれば良かったんですね。
    非常に爽快な解法を教えていただき
    大変勉強になりました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-5]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48830 / 親記事)  数列
□投稿者/ 楼蘭山 一般人(1回)-(2018/09/22(Sat) 20:44:15)
    数列{a[n]}は、a[1]=1/2であり、
    全てのn≧2に対して
    a[n]=(1/2)Σ[k=1,n-1]a[k]a[n-k]
    を満たしている。
    (1)全てのn≧2に対して、
    Σ[i=1,n-1]a[i](Σ[j=1,n-i]a[j])=2Σ[k=2,n]a[k]
    および
    2na[n]=1-Σ[k=1,n-1]a[k]
    が成り立つことを示せ。
    (2)a[n]をnで表せ。



    (1)から分かりません。お願いします。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48825 / 親記事)  ベクトルについて。
□投稿者/ コルム 一般人(1回)-(2018/09/22(Sat) 15:04:35)
    4点O(0,0,0),A(1,2,4),B(4,-1,3),C(-2,1,7)がある。このとき
    (1)線分BCをa:1-aに内分する点をDとする。ただし、0<a<1である。このとき
    点Dの座標をaを用いて表せ。

    (2)点Aを通り、ベクトルn↑=(-3,1,2)に垂直な平面をαとする。
    @平面αと線分BCの交点を求めよ。
    A四面体OABCの体積をVとする。四面体OABCは平面αにより2つの立体に分けられ
    そのうち点Cを含む立体の体積をV1とする。このとき、V1/Vの値を求めよ。
    教えていただけると幸いです。大変恐縮ですが。
    (2)からわかりません。
    マルチポストですみません。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48824 / 親記事)  不等式
□投稿者/ 虚言症 一般人(1回)-(2018/09/21(Fri) 08:33:32)
    において

    が成り立つことの証明を教えて下さい。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▲上のスレッド
■48814 / 親記事)  複素級数のコーシー積
□投稿者/ Make 一般人(1回)-(2018/09/15(Sat) 18:30:48)
    複素級数のコーシー積の絶対収束性(写真の上の問い)を証明したのですが、これで正しいでしょうか?

    解答は、次のコメントで添付します。
1700×2338 => 182×250

1537003848.jpg
/147KB
引用返信/返信 [メール受信/OFF]

▽[全レス6件(ResNo.2-6 表示)]
■48816 / ResNo.2)  Re[2]: 複素級数のコーシー積
□投稿者/ めぇぷる 一般人(1回)-(2018/09/15(Sat) 22:17:29)
    正しいです。
引用返信/返信 [メール受信/OFF]
■48817 / ResNo.3)  Re[3]: 複素級数のコーシー積
□投稿者/ Make 一般人(4回)-(2018/09/15(Sat) 22:34:01)
    ありがとうございます!
引用返信/返信 [メール受信/OFF]
■48818 / ResNo.4)  Re[3]: 複素級数のコーシー積
□投稿者/ Make 一般人(5回)-(2018/09/15(Sat) 22:53:34)
    すみません。もう一つだけ確認したいことがございます。

    証明の中で、以下の画像のように極限の収束先の方が値が大きいという不等式を使いましたが、Σ[k=0,n](α_k)は正項級数でかつΣ[n=0,∞](α_n)が絶対収束の級数であるということから明らかに成り立つとしても良いのでしょうか?

1152×648 => 250×140

1537019614.png
/42KB
引用返信/返信 [メール受信/OFF]
■48820 / ResNo.5)  Re[4]: 複素級数のコーシー積
□投稿者/ めぇぷる 一般人(2回)-(2018/09/16(Sun) 05:58:18)
    良いでしょう。問題ないです。
引用返信/返信 [メール受信/OFF]
■48821 / ResNo.6)  Re[5]: 複素級数のコーシー積
□投稿者/ Make 一般人(6回)-(2018/09/16(Sun) 08:09:38)
    ありがとうございます!

    これで理解できました!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-6]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター