数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalα^52(2) | Nomalモスキーノコピー(0) | Nomal放物線の標準形(4) | Nomal循環小数(2) | Nomal四角形の辺の長さ(2) | Nomalコラッツ予想について(2) | Nomal三角形の角(3) | Nomal約数関数とオイラー関数(0) | Nomal有理数と素数(1) | Nomal円と曲線(3) | Nomalフィボナッチ数列について。(0) | Nomal導関数の定義について(2) | Nomal楕円曲線(1) | Nomallog(1+x)<√x(4) | Nomal円と3次関数(4) | NomalΣと積分の交換(3) | Nomalcos(1)とtan(1/2)(2) | Nomal合成数(2) | Nomal積分について(2) | Nomal因数分解(4) | Nomal2次関数(1) | Nomal常用対数と桁数の関係(2) | Nomal(削除)(2) | Nomal行列を含む偏微分(0) | Nomalカタラン数(4) | Nomal無限級数(1) | Nomalスーパコピーvog.agvol.com/brand-70-c0.html ボーイロンドンブラドスパーピー(0) | Nomal大学数学 4次多項式 フェラーリの解法(0) | Nomalかんたんなフェルマーの最終定理の証明(19) | Nomal写像の問題です。(0) | Nomal離散数学 有向グラフの問題(0) | Nomal原始関数問題(1) | Nomal三角形と円の関係について(0) | Nomal|e^(icosθ)|、|e^(isinθ)|について(2) | Nomal大学数学 重積分(0) | Nomal簡単な論理式〜変な質問ですみませんが・・・(2) | Nomal割り算(1) | Nomal確率の問題です。大至急お願い致します(0) | Nomal整数解(7) | Nomal全ての 整数解 等(4) | Nomal完璧なのコピーbuytowe(0) | Nomal素数(1) | Nomal指数計算の練習(2) | Nomal微分積分(0) | Nomalテイラー展開(0) | Nomal合同式(1) | Nomalエルミート行列(0) | Nomal【大学数学】貨幣需要関数(0) | Nomal陰関数(0) | Nomalフェルマーの最終定理の証明(6) | Nomal統計学(0) | Nomalベクトル空間(0) | Nomal複素数の三角不等式(引き算)(2) | Nomal微分の問題(0) | Nomal体積(1) | Nomalフェルマーの最終定理の証明(z=x+rとおく方法)(1) | Nomal微分可能(2) | Nomalチェビシェフ 偏差値(0) | Nomal線形代数(1) | Nomal複素積分(2) | Nomalテイラー展開(2) | Nomal線形変換(1) | Nomal大学数学 線形代数 部分空間の証明(0) | Nomal証明問題(1) | Nomal一次結合と一次独立(0) | Nomal証明問題です(0) | Nomalz^5 = -1 を解く(2) | Nomal空間上の点(2) | Nomal複素関数の部分分数分解(4) | Nomal熱力学の本に出てくる式変形がわかりません。(0) | Nomalピタゴラス数の求め方(0) | Nomal二項定理を使ったピタゴラスの定理の証明(0) | Nomal二項定理を使ったフェルマーの最終定理の証明(0) | Nomal2次方程式(3) | Nomal数学A 図形の計算(0) | Nomalある式の微分における式変形について(2) | Nomal3次元空間の点(2) | Nomal線形代数」(0) | Nomal統計学の問題(0) | Nomal(削除)(3) | Nomal1/(z^2-1) を z = 1 でローラン展開する。(2) | Nomal無限等比級数について(2) | Nomalcosの不等式(2) | Nomal品質の服(0) | Nomal複素平面上の円(2) | Nomal積分の解き方について(0) | Nomal期待値(2) | Nomal3の個数(7) | Nomal複素数の関数(5) | Nomal分数関数の積分(2) | Nomalベクトルについて。(1) | Nomalベクトルについて。(0) | Nomalベクトル解析(1) | Nomal線形代数 証明(0) | Nomalベクトル解析のスカラー場について(2) | Nomalフーリエ展開とフーリエ変換(0) | Nomal加速度の次元と速度の次元(1) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal第2可算公理(0) | Nomalフェルマーの最終定理の簡単な証明9(25) |



■記事リスト / ▼下のスレッド
■47704 / 親記事)  組合せの問題?
□投稿者/ 数学弱者 一般人(1回)-(2016/06/26(Sun) 21:54:38)
    大変申し訳ありません…、
    某試験に出題された問題なのですが、
    下記の問題の解き方を教えて頂けないでしょうか…

    問題
    六角形の頂点(時計回りに)A〜Fがあり、頂点Aにコインを置く。
    そして、1〜10までの数字が書かれた10枚の札を無作為に引いて、
    書かれている数だけ、コインを時計回りに動かす。
    例えば、「3」の札を引いたらA→B→C→Dと動かす。
    このとき、7枚の札を引いて、コインを動かしたところ、
    コインは頂点Aに戻り、残りの3枚の数字は全て奇数であった。
    この残り3枚の数字の組み合わせは何通りあるか?

    ただし、書かれている数字は、それぞれ1枚ずつで、
    引いた札は戻さないものとする。

    万が一、問題の転記ミスがあり、
    問題に不備がございましたらご指摘ください。

    宜しくお願い致します。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■47706 / ResNo.1)  Re[1]: 組合せの問題?
□投稿者/ らすかる 一般人(22回)-(2016/06/26(Sun) 23:39:41)
    1〜10を全部引くと合計55ですから最後はBに止まります。
    ということは、残った3枚の合計は6n+1であり、
    1+3+5=9以上5+7+9=21以下ですから
    13か19となります。
    合計が13になる組合せは(1,3,9)(1,5,7)の2通り
    合計が19になる組合せは(3,7,9)の1通りですから、
    条件を満たす組合せは全部で3通りです。

引用返信/返信 [メール受信/OFF]
■47707 / ResNo.2)  Re[2]: 組合せの問題?
□投稿者/ 数学弱者 一般人(2回)-(2016/06/27(Mon) 21:38:04)
    らすかる様

    ご回答くださり有難うございます。
    助かりました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47692 / 親記事)  A×Bがσ集合体だがAかBかがσ集合体ではない例とは?
□投稿者/ ちゃぼ 一般人(1回)-(2016/06/13(Mon) 04:14:34)
    2016/06/13(Mon) 04:37:35 編集(投稿者)

    A,Bとも零集合ではないとします。

    直積集合A×Bが2次元ルベーグσ集合体L(R^2)の元

    AとBともL(R)の元。

    の反例を探してます。どなたか教えてください。

引用返信/返信 [メール受信/OFF]

▽[全レス4件(ResNo.1-4 表示)]
■47693 / ResNo.1)  Re[1]: A×Bがσ集合体だがAかBかがσ集合体ではない例とは?
□投稿者/ 通りすがり 一般人(1回)-(2016/06/14(Tue) 05:56:27)
    Aを非可測集合、Bを一点とかじゃだめですか?
引用返信/返信 [メール受信/OFF]
■47695 / ResNo.2)  Re[2]: A×Bがσ集合体だがAかBかがσ集合体ではない例とは?
□投稿者/ ちゃぼ 一般人(2回)-(2016/06/15(Wed) 10:03:27)
    この場合のBは零集合ではないのでしょうか?
引用返信/返信 [メール受信/OFF]
■47698 / ResNo.3)  Re[3]: A×Bがσ集合体だがAかBかがσ集合体ではない例とは?
□投稿者/ 通りすがり 一般人(2回)-(2016/06/16(Thu) 21:51:53)
    問題文見落としてました。すみません。

    AxBの定義関数をf(x,y)とすると、仮定よりfは直積空間で可測。

    fについてFubiniの定理を使うと、
    f(・,y)はほとんどいたるところのy∈Bについて可測となって、
    Bは零集合ではないから、f(・,y)が可測となるyがある。

    そして、f(・,y)はAの定義関数であるから、Aは可測。

    というわけで、反例はないような気がするのですが。

    どうでしょうか?
引用返信/返信 [メール受信/OFF]
■47699 / ResNo.4)  Re[4]: A×Bがσ集合体だがAかBかがσ集合体ではない例とは?
□投稿者/ ちゃぼ 一般人(3回)-(2016/06/17(Fri) 00:49:47)
    A,Bとも零集合ではないなら

    直積集合A×Bが2次元ルベーグσ集合体L(R^2)の元

    AとBともL(R)の元。

    となるのですね。どうも有難うございます。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-4]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47696 / 親記事)  これには選択公理が要るの?
□投稿者/ JJJ 一般人(1回)-(2016/06/15(Wed) 10:11:37)
    2016/06/15(Wed) 10:12:31 編集(投稿者)

    Cは複素数体,
    φ≠A⊂Cでα∈CはAの集積点の時,
    {a_n;n∈N}⊂Aでlim_{n→∞}a_n=αなる数列(a_n)_{n∈N}が存在する事は選択公理が仮定されてないと言えないのでしょうか?
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47687 / 親記事)  ガウス記号
□投稿者/ 陽 一般人(1回)-(2016/06/05(Sun) 13:58:57)
    を自然数とするとき、



    が成り立つことを教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■47688 / ResNo.1)  Re[1]: ガウス記号
□投稿者/ らすかる 一般人(21回)-(2016/06/05(Sun) 16:24:20)
    n=6mのとき、左辺は
    Σ[k=1〜2m][(6m-3k+2)/2]
    =Σ[k=1〜m](3m-3k+2)+Σ[k=1〜m](3m-3k+1) (kの偶奇で分けてそれぞれ計算)
    =Σ[k=1〜m](6m-6k+3)
    =3m^2
    右辺は
    [{(6m)^2+6}/12]
    =[(36m^2+6)/12]
    =3m^2
    となり成り立つ。

    n=6m+1のとき、左辺は
    Σ[k=1〜2m][(6m-3k+3)/2]
    =Σ[k=1〜m](3m-3k+3)+Σ[k=1〜m](3m-3k+1)
    =Σ[k=1〜m](6m-6k+4)
    =3m^2+m
    右辺は
    [{(6m+1)^2+6}/12]
    =[(36m^2+12m+7)/12]
    =3m^2+m
    となり成り立つ。

    n=6m+2のとき、左辺は
    Σ[k=1〜2m][(6m-3k+4)/2]
    =Σ[k=1〜m](3m-3k+3)+Σ[k=1〜m](3m-3k+2)
    =Σ[k=1〜m](6m-6k+5)
    =3m^2+2m
    右辺は
    [{(6m+2)^2+6}/12]
    =[(36m^2+24m+10)/12]
    =3m^2+2m
    となり成り立つ。

    n=6m+3のとき、左辺は
    Σ[k=1〜2m+1][(6m-3k+5)/2]
    =Σ[k=1〜m+1](3m-3k+4)+Σ[k=1〜m](3m-3k+2)
    =Σ[k=1〜m](6m-6k+6)+1
    =3m^2+3m+1
    右辺は
    [{(6m+3)^2+6}/12]
    =[(36m^2+36m+15)/12]
    =3m^2+3m+1
    となり成り立つ。

    n=6m+4のとき、左辺は
    Σ[k=1〜2m+1][(6m-3k+6)/2]
    =Σ[k=1〜m+1](3m-3k+4)+Σ[k=1〜m](3m-3k+3)
    =Σ[k=1〜m](6m-6k+7)+1
    =3m^2+4m+1
    右辺は
    [{(6m+4)^2+6}/12]
    =[(36m^2+48m+22)/12]
    =3m^2+4m+1
    となり成り立つ。

    n=6m+5のとき、左辺は
    Σ[k=1〜2m+1][(6m-3k+7)/2]
    =Σ[k=1〜m+1](3m-3k+5)+Σ[k=1〜m](3m-3k+3)
    =Σ[k=1〜m](6m-6k+8)+2
    =3m^2+5m+2
    右辺は
    [{(6m+5)^2+6}/12]
    =[(36m^2+60m+31)/12]
    =3m^2+5m+2
    となり成り立つ。

    従って
    Σ[k=1〜[n/3]][(n-3k+2)/2]=[(n^2+6)/12]
    は成り立つ。

引用返信/返信 [メール受信/OFF]
■47689 / ResNo.2)  Re[2]: ガウス記号
□投稿者/ 陽 一般人(2回)-(2016/06/05(Sun) 22:49:40)
    ご丁寧に有難うございます!
    助かりました!
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▲上のスレッド
■47680 / 親記事)  部分分数分解
□投稿者/ 夢 一般人(1回)-(2016/06/03(Fri) 21:16:31)


    をみたす の値を教えて下さい!
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■47682 / ResNo.1)  Re[2]: 部分分数分解
□投稿者/ 夢 一般人(2回)-(2016/06/03(Fri) 21:52:01)
    すみません、ωはひとつは+じゃなて共役でした
引用返信/返信 [メール受信/OFF]
■47683 / ResNo.2)  Re[3]: 部分分数分解
□投稿者/ らすかる 一般人(20回)-(2016/06/03(Fri) 22:12:04)
    1/{(1-x)(1-x^2)(1-x^3)}
    =a/(1-x)+b/(1-x)^2+c/(1-x)^3+d/(1+x)+e/(x-ω)+f/(x-ω~)
    ならば
    a=17/72, b=1/4, c=1/6, d=1/8, e=-ω/9, f=-ω~/9
    になると思います。

引用返信/返信 [メール受信/OFF]
■47684 / ResNo.3)  Re[4]: 部分分数分解
□投稿者/ 夢 一般人(3回)-(2016/06/03(Fri) 23:10:13)
    ありがとうございます!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター