数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
UpDate互いに素(1) | UpDateベクトルについて。(1) | UpDate二次方程式について。(1) | UpDate図形について。(1) | UpDate埋め(1) | Nomalベクトル(1) | Nomal極値(1) | Nomal極値(1) | Nomal代数学の問題(1) | Nomal位相空間の問題(1) | Nomal剰余の定理について。(1) | Nomal積分計算(2) | Nomal広義積分の質問(4) | Nomal積分範囲の極限(2) | Nomal複素数計算(2) | Nomal複素数の実部と虚部の分け方がわかりません(3) | Nomal(削除)(0) | Nomal正接の値(2) | Nomal積分に関する質問(1) | Nomal順列(6) | Nomal確率(1) | Nomal直線の通過領域(1) | Nomal場合の数(3) | Nomal数学検定2級について。(0) | Nomal二次関数について。(4) | Nomal円(5) | Nomal円順列(2) | Nomal不等式(4) | Nomal複素数(1) | Nomal待ち行列(0) | Nomal模範解答の解説お願いします(1) | Nomal三角関数(1) | Nomal確率(1) | NomalP(a,b,c) = P(c|b) * P(b|a) 成立条件?(0) | Nomal確率統計についてです(0) | Nomal不等式(4) | Nomal自然数の和と倍数の性質(0) | Nomal円環(3) | Nomal模範解答の解説お願いします(0) | Nomal三角関数(1) | Nomal微分(2) | Nomal√3 v.s. √-3(2) | Nomal多項式の解と係数(0) | Nomal有理数と整数(2) | Nomal曲線の長さ(1) | Nomal数的推理(3) | Nomal数的推理(2) | Nomal連立(1) | Nomal接する(0) | Nomal複素数(3) | Nomal2階導関数・第2次導関数(0) | Nomal微分(1) | Nomal数学では循環する定義・公理は許されていますか(1) | Nomal実数解の取り得る値の範囲(2) | Nomalベクトルについて。(0) | Nomalクロム ハーツ 首饰 コピー(0) | Nomalベクトル場の問題(0) | Nomal自然数の謎(4) | Nomalバルビエの定理証明(1) | Nomal三角形(0) | Nomal数列(8) | Nomal整式について。(0) | Nomal確率について。(0) | Nomal直線と三角形(1) | Nomal2変数関数(1) | Nomal平行四辺形(2) | Nomal計算量について(1) | Nomal昔の東大模試の数列(2) | Nomal準同型写像(3) | Nomal互いに素(2) | Nomal数列の最大項(1) | Nomal数列とmod(2) | Nomal数列とmod(7) | Nomal2^(1/3)-1(0) | Nomalどう並べ替えても一部を取り出しても素数(5) | Nomal漸化式(10) | Nomal数と式(2) | Nomal不等式(2) | Nomal放物線と円(3) | Nomal四角形(3) | Nomal平方数の和(mod p)、個数(0) | Nomal複素数の計算(4) | Nomal調和級数(0) | Nomalcos方程式(0) | Nomal整数の方程式(4) | Nomalガンマ関数(0) | Nomal場合の数について。(0) | Nomalコンパクトである事の証明が(1) | Nomal(1/4)(3:4:5)(2) | Nomal漸化式(6) | Nomal等比数列の問題です(4) | Nomal3次方程式(6) | Nomal漸化式と極限(2) | Nomal互いに素?(4) | Nomal(削除)(5) | Nomalなぜy軸対称となるのかが理解できません。(2) | Nomal(削除)(2) | Nomal多項式の決定(1) | Nomal場合の数について。(1) | Nomal連結集合のはなし(1) |



■記事リスト / ▼下のスレッド
■47687 / 親記事)  ガウス記号
□投稿者/ 陽 一般人(1回)-(2016/06/05(Sun) 13:58:57)
    を自然数とするとき、



    が成り立つことを教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■47688 / ResNo.1)  Re[1]: ガウス記号
□投稿者/ らすかる 一般人(21回)-(2016/06/05(Sun) 16:24:20)
    n=6mのとき、左辺は
    Σ[k=1〜2m][(6m-3k+2)/2]
    =Σ[k=1〜m](3m-3k+2)+Σ[k=1〜m](3m-3k+1) (kの偶奇で分けてそれぞれ計算)
    =Σ[k=1〜m](6m-6k+3)
    =3m^2
    右辺は
    [{(6m)^2+6}/12]
    =[(36m^2+6)/12]
    =3m^2
    となり成り立つ。

    n=6m+1のとき、左辺は
    Σ[k=1〜2m][(6m-3k+3)/2]
    =Σ[k=1〜m](3m-3k+3)+Σ[k=1〜m](3m-3k+1)
    =Σ[k=1〜m](6m-6k+4)
    =3m^2+m
    右辺は
    [{(6m+1)^2+6}/12]
    =[(36m^2+12m+7)/12]
    =3m^2+m
    となり成り立つ。

    n=6m+2のとき、左辺は
    Σ[k=1〜2m][(6m-3k+4)/2]
    =Σ[k=1〜m](3m-3k+3)+Σ[k=1〜m](3m-3k+2)
    =Σ[k=1〜m](6m-6k+5)
    =3m^2+2m
    右辺は
    [{(6m+2)^2+6}/12]
    =[(36m^2+24m+10)/12]
    =3m^2+2m
    となり成り立つ。

    n=6m+3のとき、左辺は
    Σ[k=1〜2m+1][(6m-3k+5)/2]
    =Σ[k=1〜m+1](3m-3k+4)+Σ[k=1〜m](3m-3k+2)
    =Σ[k=1〜m](6m-6k+6)+1
    =3m^2+3m+1
    右辺は
    [{(6m+3)^2+6}/12]
    =[(36m^2+36m+15)/12]
    =3m^2+3m+1
    となり成り立つ。

    n=6m+4のとき、左辺は
    Σ[k=1〜2m+1][(6m-3k+6)/2]
    =Σ[k=1〜m+1](3m-3k+4)+Σ[k=1〜m](3m-3k+3)
    =Σ[k=1〜m](6m-6k+7)+1
    =3m^2+4m+1
    右辺は
    [{(6m+4)^2+6}/12]
    =[(36m^2+48m+22)/12]
    =3m^2+4m+1
    となり成り立つ。

    n=6m+5のとき、左辺は
    Σ[k=1〜2m+1][(6m-3k+7)/2]
    =Σ[k=1〜m+1](3m-3k+5)+Σ[k=1〜m](3m-3k+3)
    =Σ[k=1〜m](6m-6k+8)+2
    =3m^2+5m+2
    右辺は
    [{(6m+5)^2+6}/12]
    =[(36m^2+60m+31)/12]
    =3m^2+5m+2
    となり成り立つ。

    従って
    Σ[k=1〜[n/3]][(n-3k+2)/2]=[(n^2+6)/12]
    は成り立つ。

引用返信/返信 [メール受信/OFF]
■47689 / ResNo.2)  Re[2]: ガウス記号
□投稿者/ 陽 一般人(2回)-(2016/06/05(Sun) 22:49:40)
    ご丁寧に有難うございます!
    助かりました!
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47680 / 親記事)  部分分数分解
□投稿者/ 夢 一般人(1回)-(2016/06/03(Fri) 21:16:31)


    をみたす の値を教えて下さい!
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■47682 / ResNo.1)  Re[2]: 部分分数分解
□投稿者/ 夢 一般人(2回)-(2016/06/03(Fri) 21:52:01)
    すみません、ωはひとつは+じゃなて共役でした
引用返信/返信 [メール受信/OFF]
■47683 / ResNo.2)  Re[3]: 部分分数分解
□投稿者/ らすかる 一般人(20回)-(2016/06/03(Fri) 22:12:04)
    1/{(1-x)(1-x^2)(1-x^3)}
    =a/(1-x)+b/(1-x)^2+c/(1-x)^3+d/(1+x)+e/(x-ω)+f/(x-ω~)
    ならば
    a=17/72, b=1/4, c=1/6, d=1/8, e=-ω/9, f=-ω~/9
    になると思います。

引用返信/返信 [メール受信/OFF]
■47684 / ResNo.3)  Re[4]: 部分分数分解
□投稿者/ 夢 一般人(3回)-(2016/06/03(Fri) 23:10:13)
    ありがとうございます!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47676 / 親記事)  素数
□投稿者/ 教えてください 一般人(1回)-(2016/06/02(Thu) 18:51:56)
    pが5以上の素数であれば、
    a^2+ab+b^2≡-1 (mod p)
    となる整数a,bが存在する

    これの証明を教えてください!
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■47677 / ResNo.1)  Re[1]: 素数
□投稿者/ IT 一般人(2回)-(2016/06/02(Thu) 22:07:36)
    平方完成して
    a^2+ab+b^2≡-1 (mod p)
    ⇔4a^2+4ab+4b^2≡-4 (mod p)
    ⇔(2a+b)^2-b^2+4b^2≡-4 (mod p)
    ⇔(2a+b)^2≡-3b^2-4 (mod p)  なので

    -3b^2-4がpを法とする平方剰余になるような整数bが存在することが示せればいいと思いますが出来てません。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47674 / 親記事)  ご教授ください
□投稿者/ とある大学生 一般人(1回)-(2016/06/01(Wed) 23:12:48)
    べき級数展開の問題です。

    頭皮級数の和の公式を使って、
    x/(1+x^2) をxのべき級数で表わせ。

    よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■47675 / ResNo.1)  Re[1]: ご教授ください
□投稿者/ らすかる 一般人(18回)-(2016/06/01(Wed) 23:24:19)
    |x|<1として
    Σ[k=0〜∞](-x^2)^k=1/(1+x^2) なので
    x/(1+x^2)=xΣ[k=0〜∞](-x^2)^k
    (=x-x^3+x^5-x^7+…)

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■47670 / 親記事)  オイラーのφ関数
□投稿者/ 小娘 一般人(1回)-(2016/05/30(Mon) 12:37:42)
    本を読んでいて疑問に思ったので教えて下さい

    自然数nに対し、n以下の自然数でnと互いに素であるものの個数をφ(n)とします
    kを与えられた自然数とします
    φ(n)=kをみたす自然数nの個数は有限である
    ってのは簡単に分かることでしょうか?
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■47671 / ResNo.1)  Re[1]: オイラーのφ関数
□投稿者/ らすかる 一般人(17回)-(2016/05/30(Mon) 19:26:06)
    ちょっと雑ですが
    nの素因数のうち2以外の個数はlog[3](n/2)個以下ですから、
    n以下でnと互いに素である数は少なくとも
    n×(1/2)×(2/3)^log[3](n/2)=(n/2)^log[3]2個以上あります。
    従ってφ(n)=kをみたす自然数nの個数は有限個です。

引用返信/返信 [メール受信/OFF]
■47672 / ResNo.2)  Re[1]: オイラーのφ関数
□投稿者/ IT 一般人(1回)-(2016/06/01(Wed) 19:50:59)
    (別解)
    φ(n)=k とする。
    nがk+1より大きい素因数pを持つとすると、φ(n)≧p-1>kとなるので、nの素因数はk+1以下。
    k+1以下の素数の個数をmとする。
    nを素因数分解してn=(p^a)(q^b)...(r^c) とする
    このときφ(n)=n(1-1/p)(1-1/q)...(1-1/r)=k
    よってn(1/2)^m≦k
    よってn≦k(2^m) したがってnは有限
引用返信/返信 [メール受信/OFF]
■47673 / ResNo.3)  Re[1]: オイラーのφ関数
□投稿者/ 小娘 一般人(2回)-(2016/06/01(Wed) 22:50:42)
    お二人とも有り難うございます
    よく分かりました
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター