数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal複素積分(2) | Nomalテイラー展開(2) | Nomal線形変換(1) | Nomal大学数学 線形代数 部分空間の証明(0) | Nomal証明問題(1) | Nomal一次結合と一次独立(0) | Nomal証明問題です(0) | Nomalz^5 = -1 を解く(2) | Nomal空間上の点(2) | Nomal複素関数の部分分数分解(4) | Nomal熱力学の本に出てくる式変形がわかりません。(0) | Nomalピタゴラス数の求め方(0) | Nomal二項定理を使ったピタゴラスの定理の証明(0) | Nomal二項定理を使ったフェルマーの最終定理の証明(0) | Nomal2次方程式(3) | Nomal数学A 図形の計算(0) | Nomalある式の微分における式変形について(2) | Nomal3次元空間の点(2) | Nomal線形代数」(0) | Nomal統計学の問題(0) | Nomal自然対数 e について(3) | Nomal1/(z^2-1) を z = 1 でローラン展開する。(2) | Nomal無限等比級数について(2) | Nomalcosの不等式(2) | Nomal品質の服(0) | Nomal複素平面上の円(2) | Nomal積分の解き方について(0) | Nomal期待値(2) | Nomal3の個数(7) | Nomal複素数の関数(5) | Nomal分数関数の積分(2) | Nomalベクトルについて。(1) | Nomalベクトルについて。(0) | Nomalベクトル解析(1) | Nomal線形代数 証明(0) | Nomalベクトル解析のスカラー場について(2) | Nomalフーリエ展開とフーリエ変換(0) | Nomal加速度の次元と速度の次元(1) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal第2可算公理(0) | Nomalフェルマーの最終定理の簡単な証明9(25) | Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal無限和(2) | Nomal大学一年 線形代数(1) | Nomal大学で出された行列の課題がわかりません。(1) | Nomal広義積分(0) | Nomal 至急この問題を解説していただきたいです(0) | Nomal有理数(1) | Nomal論理関数(0) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal整数解(2) | Nomal数列の一般項(2) | Nomal統計学 二項分布(0) | Nomal連立微分方程式(1) | Nomal連立方程式(3) | Nomal全ての 整数解 等(0) | Nomal解析学(2) | Nomal行列のn乗(1) | Nomal色々な方法 で(0) | Nomal初期値問題(1) | Nomal解析学(1) | Nomal統計学 確率密度関数 分布関数 確率(0) | Nomal統計学についての質問(3) | Nomal対数尤度関数について!(0) | Nomal関数について(0) | Nomal最小公倍数とはちがいますが。。(2) | Nomal論理を教えて下さい(12) | Nomal三次方程式(2) | Nomal消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学(2) | Nomal線形代数(0) | Nomal極限(0) | Nomalボルスク・ウラムの定理の証明(0) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal素数(0) | Nomalデルタ関数に関する問題(0) | Nomal正三角形と半円(2) | Nomal不等式(2) | Nomal漸化式(0) | Nomal確率における情報(17) | Nomal統計学の質問(0) | Nomal確率変数(0) | Nomal複数の点によって構成される多角形を相互の距離情報から類推する方法(6) | Nomal正射影再び(笑)(4) | Nomal正射影:正三角形→2等辺三角形(2) | Nomal球面上の2つの円の重なっている部分の面積(0) | Nomal三角法(0) | Nomal大学数学です(0) | Nomal三角形(2) | Nomal数列の疑問(2) | Nomal素数積の評価〜ベルトラン・チェビシェフの定理(5) | Nomaleの極限(2) | Nomal積分(0) | Nomal四角形の極限(2) |



■記事リスト / ▼下のスレッド
■48990 / 親記事)  複素解析学 留数計算
□投稿者/ ぬ 一般人(1回)-(2019/01/20(Sun) 12:55:41)
    次積分を留数計算を使って求めなさい

    $甜0→∞]x^2/(x^2+1)^3dx$

    できる限り途中式を詳しく書いていただければ幸いです。
    よろしくお願い致します。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48997 / ResNo.1)  Re[1]: 複素解析学 留数計算
□投稿者/ muturajcp 一般人(46回)-(2019/01/23(Wed) 20:58:04)
    f(z)=z^2/(z^2+1)^3
    とすると
    f(z)の特異点は±iで,3位の極である
    Cの内部にあるものはiだけである
    z=iはf(z)の3位の極だから

    Res[f(z),i]
    =(1/2)lim_{z→i}{z^2/(z+i)^3}"
    =(1/2)lim_{z→i}[2{z/(z+i)^3}'-3{z^2/(z+i)^4}']
    =(1/2)lim_{z→i}[2{1/(z+i)^3-3z/(z+i)^4}-3{2z/(z+i)^4-4z^2/(z+i)^5}]
    =(1/2)lim_{z→i}[2/(z+i)^3-12z/(z+i)^4+12z^2/(z+i)^5]
    =lim_{z→i}[(z+i)^2-6z(z+i)+6z^2]/(z+i)^5
    =lim_{z→i}(z^2-4iz-1)/(z+i)^5
    =-i/16

    ∫_{C}f(z)dz
    =i2πRes[f(z),i]
    =π/8
    したがって

    ∫_{-R〜R}f(z)dz+∫_{Γ}f(z)dz=π/8
    lim_{R→∞}∫_{Γ}f(z)dz=lim_{R→∞}∫_{0〜π}[ie^(3it)/{Re^(2it)+1/R}^3]dt=0

    ∫_{-∞〜∞}x^2/(x^2+1)^3dx=π/8
    したがって
    ∫_{0〜∞}x^2/(x^2+1)^3dx=π/16
1000×1000 => 250×250

m20190120121.jpg
/79KB
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48989 / 親記事)  数列について。
□投稿者/ コルム 一般人(38回)-(2019/01/19(Sat) 19:08:57)
    助けていただけると幸いです。
717×366 => 250×127

1547892537.png
/33KB
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48994 / ResNo.1)  Re[1]: 数列について。
□投稿者/ muturajcp 一般人(45回)-(2019/01/21(Mon) 10:00:19)
    答えは添付ファイルにあります
717×322 => 250×112

1548032419.png
/33KB
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48987 / 親記事)  数列について。
□投稿者/ コルム 一般人(36回)-(2019/01/17(Thu) 10:34:12)
    次の問題を助けていただけないでしょうか?
727×322 => 250×110

1547688852.png
/30KB
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48993 / ResNo.1)  Re[1]: 数列について。
□投稿者/ muturajcp 一般人(44回)-(2019/01/20(Sun) 20:22:26)
    (1)
    nを自然数とする
    -1/(n+1)-{-1/n+1/(n+1)^2}
    =-1/(n+1)+1/n-1/(n+1)^2
    ={(n+1)^2-n(n+1)-n}/{n(n+1)^2}
    =(n^2+2n+1-n^2-n-n)/{n(n+1)^2}
    =1/{n(n+1)^2}
    >0
    だから
    両辺に{-1/n+1/(n+1)^2}を加え左右を入れ替えると

    -1/n+1/(n+1)^2<-1/(n+1)

    (2)
    P(n)=[Σ_{k=1〜n}1/(k+1)^2<2-1/(n+1)]
    とする
    P(1)=[1+1/2^2=1+1/4<1+1/2=3/2=2-1/2]は真
    ある自然数nに対してP(n)が真と仮定すると
    Σ_{k=1〜n}1/(k+1)^2<2-1/(n+1)
    ↓(1)から1/(n+2)^2<1/(n+1)-1/(n+2)を加えると
    Σ_{k=1〜n+1}1/(k+1)^2<2-1/(n+2)
    となって
    P(n+1)も真となるから

    全ての自然数nに対して
    Σ_{k=1〜n}1/(k+1)^2<2-1/(n+1)
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48980 / 親記事)  数Aについて。
□投稿者/ コルム 一般人(31回)-(2019/01/15(Tue) 11:05:35)
    100!を素因数分解すると2^a、3^b、5^c、7^16、11^9、13^7…となる。a,b,cの値を求めよ。

    教えていただけると幸いです。

引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48992 / ResNo.1)  Re[1]: 数Aについて。
□投稿者/ muturajcp 一般人(43回)-(2019/01/20(Sun) 20:00:01)
    100!の約数の数は

    100/2=50だから2の倍数は50個
    100/4=25だから2^2=4の倍数は25個
    [100/8]=12だから2^3=8の倍数は12個
    [100/16]=6だから2^4=16の倍数は6個
    [100/32]=3だから2^5=32の倍数は3個
    [100/64]=1だから2^6=64の倍数は1個
    a=50+25+12+6+3+1=97
    [100/3]=33だから3の倍数は33個
    [100/9]=11だから3^2=9の倍数は11個
    [100/27]=3だから3^3=27の倍数は3個
    [100/81]=1だから3^4=81の倍数は1個
    b=33+11+3+1=48
    100/5=20だから5の倍数は20個
    100/25=4だから5^2=25の倍数は4個
    c=20+4=24

    a=97
    b=48
    c=24
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■48979 / 親記事)  線積分の問題
□投稿者/ mmm 一般人(1回)-(2019/01/14(Mon) 15:47:23)
    画像の問題の解き方を教えて下さい。
1125×1024 => 250×227

520BB67F-F758-4AFC-AF6E-1273535E5C45.jpeg
/138KB
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48991 / ResNo.1)  Re[1]: 線積分の問題
□投稿者/ muturajcp 一般人(42回)-(2019/01/20(Sun) 16:06:46)
    A=(0,0)
    B=(3,3)
    C=(3,6)
    D=(0,9)
    I
    =∫_{ABCD}(sinx+3y)dx+(4x+y)dy
    =
    ∫_{0から3}(sinx+3x)dx
    +∫_{0〜3}(4y+y)dy
    +∫_{3〜6}(4*3+y)dy
    +∫_{3〜0}{sinx+3(9-x)}dx
    +∫_{6〜9}{4(9-y)+y}dy
    =
    3∫_{0〜3}xdx
    +5∫_{0〜3}ydy
    +12∫_{3〜6}dy
    +∫_{3〜6}ydy
    +27∫_{3〜0}dx
    -3∫_{3〜0}xdx
    +36∫_{6〜9}dy
    -3∫_{6〜9}ydy
    =
    6∫_{0〜3}xdx
    +5∫_{0〜3}ydy
    +63
    +∫_{3〜6}ydy
    -3∫_{6〜9}ydy
    =
    11*3^2/2+63
    +[y^2/2]_{3〜6}
    -3[y^2/2]_{6〜9}
    =
    117/2
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター