数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal一次結合と一次独立(0) | Nomal証明問題です(0) | Nomalz^5 = -1 を解く(2) | Nomal空間上の点(2) | Nomal複素関数の部分分数分解(4) | Nomal熱力学の本に出てくる式変形がわかりません。(0) | Nomalピタゴラス数の求め方(0) | Nomal二項定理を使ったピタゴラスの定理の証明(0) | Nomal二項定理を使ったフェルマーの最終定理の証明(0) | Nomal2次方程式(3) | Nomal数学A 図形の計算(0) | Nomalある式の微分における式変形について(2) | Nomal3次元空間の点(2) | Nomal線形代数」(0) | Nomal統計学の問題(0) | Nomal自然対数 e について(3) | Nomal1/(z^2-1) を z = 1 でローラン展開する。(2) | Nomal無限等比級数について(2) | Nomalcosの不等式(2) | Nomal品質の服(0) | Nomal複素平面上の円(2) | Nomal積分の解き方について(0) | Nomal期待値(2) | Nomal3の個数(7) | Nomal複素数の関数(5) | Nomal分数関数の積分(2) | Nomalベクトルについて。(1) | Nomalベクトルについて。(0) | Nomalベクトル解析(1) | Nomal線形代数 証明(0) | Nomalベクトル解析のスカラー場について(2) | Nomalフーリエ展開とフーリエ変換(0) | Nomal加速度の次元と速度の次元(1) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal第2可算公理(0) | Nomalフェルマーの最終定理の簡単な証明9(25) | Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal無限和(2) | Nomal大学一年 線形代数(1) | Nomal大学で出された行列の課題がわかりません。(1) | Nomal広義積分(0) | Nomal 至急この問題を解説していただきたいです(0) | Nomal有理数(1) | Nomal論理関数(0) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal整数解(2) | Nomal数列の一般項(2) | Nomal統計学 二項分布(0) | Nomal連立微分方程式(1) | Nomal連立方程式(3) | Nomal全ての 整数解 等(0) | Nomal解析学(2) | Nomal行列のn乗(1) | Nomal色々な方法 で(0) | Nomal初期値問題(1) | Nomal解析学(1) | Nomal統計学 確率密度関数 分布関数 確率(0) | Nomal統計学についての質問(3) | Nomal対数尤度関数について!(0) | Nomal関数について(0) | Nomal最小公倍数とはちがいますが。。(2) | Nomal論理を教えて下さい(12) | Nomal三次方程式(2) | Nomal消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学(2) | Nomal線形代数(0) | Nomal極限(0) | Nomalボルスク・ウラムの定理の証明(0) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal素数(0) | Nomalデルタ関数に関する問題(0) | Nomal正三角形と半円(2) | Nomal不等式(2) | Nomal漸化式(0) | Nomal確率における情報(17) | Nomal統計学の質問(0) | Nomal確率変数(0) | Nomal複数の点によって構成される多角形を相互の距離情報から類推する方法(6) | Nomal正射影再び(笑)(4) | Nomal正射影:正三角形→2等辺三角形(2) | Nomal球面上の2つの円の重なっている部分の面積(0) | Nomal三角法(0) | Nomal大学数学です(0) | Nomal三角形(2) | Nomal数列の疑問(2) | Nomal素数積の評価〜ベルトラン・チェビシェフの定理(5) | Nomaleの極限(2) | Nomal積分(0) | Nomal四角形の極限(2) | Nomalベルトラン・チェビシェフの定理について。(2) | Nomalcosの積分の評価(0) | Nomal動点の確率(2) | Nomalsinの不等式(4) | Nomal極大と変曲(4) |



■記事リスト / ▼下のスレッド
■50479 / 親記事)  自然対数 e について
□投稿者/ 湖畔 一般人(1回)-(2020/08/29(Sat) 12:05:53)
    n が自然数のとき
    e - (1+1/n)^n > ∫[0,1] x^(2n) e^x dx
    が成り立ちそうな気がするのですが、
    証明が分からないので教えてほしいです。
    よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■50480 / ResNo.1)  Re[1]: 自然対数 e について
□投稿者/ らすかる 一般人(10回)-(2020/08/29(Sat) 17:17:12)
    n=1のとき成り立たないと思います。
引用返信/返信 [メール受信/OFF]
■50481 / ResNo.2)  Re[2]: 自然対数 e について
□投稿者/ 湖畔 一般人(2回)-(2020/08/29(Sat) 17:44:46)
    失礼しました、n=1 ではひとしいですね。

    それ以外では成り立つでしょうか?
引用返信/返信 [メール受信/OFF]
■50483 / ResNo.3)  Re[3]: 自然対数 e について
□投稿者/ らすかる 一般人(11回)-(2020/08/29(Sat) 22:55:25)
    WolframAlphaでn=20まで計算したところ、n≧2では正の方から徐々に0に近づいていくようですので成り立ちそうではありますが、証明の方針が思い浮かびませんので(今のところ)証明できていません。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50476 / 親記事)  1/(z^2-1) を z = 1 でローラン展開する。
□投稿者/ Megumi 一般人(1回)-(2020/08/25(Tue) 20:18:57)
      1/(z^2-1) = 1/(z-1)*1/(z+1)
      1/(z+1) = 1/(z-1+2) = (1/2)( 1/(1+(z-1)/2) )
     ここからなんとかして 1/(z+1) を (z-1)^n で表したいのですが、行き詰まってしまいました。
     どうしたらいいでしょ?

引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50477 / ResNo.1)  Re[1]: 1/(z^2-1) を z = 1 でローラン展開する。
□投稿者/ WIZ 一般人(11回)-(2020/08/25(Tue) 21:32:11)
    1/(1+(z-1)/2) = 1-(z-1)/2+((z-1)/2)^2-((z-1)/2)^3+・・・ = Σ[k=0,∞]{(-(z-1)/2)^k}
    だから、
    1/(z^2-1) = (1/(z-1))(1/2)(1/(1+(z-1)/2)) = Σ[k=0,∞]{((1/2)^(k+1))((-1)^k)((z-1)^(k-1))}
    だと思います。
引用返信/返信 [メール受信/OFF]
■50478 / ResNo.2)  Re[2]: 1/(z^2-1) を z = 1 でローラン展開する。
□投稿者/ Megumi 一般人(2回)-(2020/08/25(Tue) 22:04:50)
     ありがとうございました。助かりました!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50473 / 親記事)  無限等比級数について
□投稿者/ あすなろ 一般人(1回)-(2020/08/25(Tue) 11:45:35)
     変な質問ですみませんが、等比数列の和を教科書のスタイルと違って

       rS_[n] =   ar + ar^2 + ・・・・・・・ + ar^(n-1) + ar^n
       -S_[n] = a + ar + ar^2 + ・・・・・・・ + ar^(n-1)
      -----------------------------------------------------
      (r-1)S_[n] = ar^n - a = a(r^n-1)
      S_[n] = a(r^n-1)/(r-1)
         = ar^n/(r-1) - a/(r-1)

    としたときも、無限等比級数は |r| < 1 のとき
      - a/(r-1) = a/(1-r)
    に収束すると考えていいのですよね?

引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50474 / ResNo.1)  Re[1]: 無限等比級数について
□投稿者/ らすかる 一般人(9回)-(2020/08/25(Tue) 12:53:58)
    どのように導き出すかとは関係なくa(1-r)に収束します。
    もちろんそのように導き出しても問題ありません。
引用返信/返信 [メール受信/OFF]
■50475 / ResNo.2)  Re[2]: 無限等比級数について
□投稿者/ あすなろ 一般人(2回)-(2020/08/25(Tue) 19:41:14)
     回答まことにありがとうございました。安心しました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50470 / 親記事)  cosの不等式
□投稿者/ 高校数学を忘れた人 一般人(1回)-(2020/08/23(Sun) 12:00:02)
    xが実数のとき
    |cos(x)|+|cos(2x)|+|cos(4x)|>1

    ってどうやって証明するのでしょうか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50471 / ResNo.1)  Re[1]: cosの不等式
□投稿者/ らすかる 一般人(8回)-(2020/08/23(Sun) 13:55:27)
    f(x)=|cosx|, g(x)=|cos2x|, h(x)=|cos4x|とする。
    f(x)の周期はπ、g(x)の周期はπ/2、h(x)の周期はπ/4であり、
    f(π-x)=f(x), g(π-x)=g(x), h(π-x)=h(x)だから、
    0≦x≦π/2についてf(x)+g(x)+h(x)>1を言えば十分。
    また、g(π/2-x)=g(x), h(π/2-x)=h(x)であり
    f(x)は0≦x≦π/2で狭義減少だから、
    π/4≦x≦π/2についてf(x)+g(x)+h(x)>1を言えば十分。
    この範囲の符号はf(x)≧0, g(x)≦0,
    π/4≦x<3π/8でh(x)<0, 3π/8≦x≦π/2でh(x)≧0だから
    f(x)+g(x)+h(x)は
    π/4≦x<3π/8のとき f(x)+g(x)+h(x)=cosx-cos2x-cos4x
    3π/8≦x≦π/2のとき f(x)+g(x)+h(x)=cosx-cos2x+cos4x
    cosx=tとおくとcos2x=2t^2-1, cos4x=8t^4-8t^2+1だから
    π/4≦x<3π/8のとき f(x)+g(x)+h(x)=-8t^4+6t^2+t
    3π/8≦x≦π/2のとき f(x)+g(x)+h(x)=8t^4-10t^2+t+2

    π/4≦x<3π/8の場合
    cosxはπ/4≦x<3π/8で減少関数であり
    cos(π/4)=√2/2<3/4, cos(3π/8)=√(2-√2)/2>3/8なので3/8<t<3/4
    このとき
    f(x)+g(x)+h(x)=-8t^4+6t^2+t
    =(3/4-t){8(t-3/8)^3+15(t-3/8)^2+(51/8)(t-3/8)}+(91/64)(t-3/8)+543/512>1

    3π/8≦x≦π/2の場合
    cosxは3π/8≦x≦π/2で減少関数であり
    cos(3π/8)=√(2-√2)/2<2/5, cos(π/2)=0なので0≦t<2/5
    このとき
    f(x)+g(x)+h(x)=8t^4-10t^2+t+2
    =8(2/5-t)^2(5t+4)t/5+(2/5-t)(770t+311)/125+628/625>1

    従ってf(x)+g(x)+h(x)>1は常に成り立つ。

    # もう少しうまい方法がありそうな気がしますが、思いつきませんでした。
引用返信/返信 [メール受信/OFF]
■50472 / ResNo.2)  Re[2]: cosの不等式
□投稿者/ 高校数学を忘れた人 一般人(2回)-(2020/08/23(Sun) 15:28:04)
    凄過ぎる解答をこんなにも早くありがとうございます。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▲上のスレッド
■50468 / 親記事)  品質の服
□投稿者/ www.iwgoods.com/buranndo-108-c0/ 一般人(1回)-(2020/08/19(Wed) 12:19:05)
    品質の服www.iwgoods.com/buranndo-108-c0/
引用返信/返信 [メール受信/OFF]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター