数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal円(5) | Nomal円順列(2) | Nomal二次関数について。(3) | Nomal不等式(4) | Nomal複素数(1) | Nomal待ち行列(0) | Nomal模範解答の解説お願いします(1) | Nomal三角関数(1) | Nomal確率(1) | NomalP(a,b,c) = P(c|b) * P(b|a) 成立条件?(0) | Nomal二次方程式について。(0) | Nomal確率統計についてです(0) | Nomal不等式(4) | Nomal自然数の和と倍数の性質(0) | Nomal円環(3) | Nomal模範解答の解説お願いします(0) | Nomal三角関数(1) | Nomal微分(2) | Nomal√3 v.s. √-3(2) | Nomal多項式の解と係数(0) | Nomal有理数と整数(2) | Nomal曲線の長さ(1) | Nomal数的推理(3) | Nomal数的推理(2) | Nomal埋め(0) | Nomalベクトルについて。(0) | Nomal連立(1) | Nomal接する(0) | Nomal複素数(3) | Nomal互いに素(0) | Nomal2階導関数・第2次導関数(0) | Nomal微分(1) | Nomal数学では循環する定義・公理は許されていますか(1) | Nomal極値(0) | Nomal極値(0) | Nomal実数解の取り得る値の範囲(2) | Nomalベクトルについて。(0) | Nomalクロム ハーツ 首饰 コピー(0) | Nomalベクトル場の問題(0) | Nomal自然数の謎(4) | Nomalバルビエの定理証明(1) | Nomal三角形(0) | Nomal数列(8) | Nomal整式について。(0) | Nomal確率について。(0) | Nomal直線と三角形(1) | Nomal2変数関数(1) | Nomal平行四辺形(2) | Nomal計算量について(1) | Nomal昔の東大模試の数列(2) | Nomal準同型写像(3) | Nomal代数学の問題(0) | Nomal互いに素(2) | Nomal数列の最大項(1) | Nomal数列とmod(2) | Nomal数列とmod(7) | Nomal2^(1/3)-1(0) | Nomalどう並べ替えても一部を取り出しても素数(5) | Nomal漸化式(10) | Nomal数と式(2) | Nomal不等式(2) | Nomal放物線と円(3) | Nomal四角形(3) | Nomal平方数の和(mod p)、個数(0) | Nomal複素数の計算(4) | Nomal調和級数(0) | Nomalcos方程式(0) | Nomal整数の方程式(4) | Nomalガンマ関数(0) | Nomal場合の数について。(0) | Nomalコンパクトである事の証明が(1) | Nomal(1/4)(3:4:5)(2) | Nomal漸化式(6) | Nomal等比数列の問題です(4) | Nomal3次方程式(6) | Nomal漸化式と極限(2) | Nomal互いに素?(4) | Nomal(削除)(5) | Nomalなぜy軸対称となるのかが理解できません。(2) | Nomal(削除)(2) | Nomal多項式の決定(1) | Nomal場合の数について。(1) | Nomal連結集合のはなし(1) | Nomal位相空間の問題(0) | Nomal超フィルタの定義はこれでOK?(0) | Nomal素数(10) | Nomal関数の連続性?(0) | Nomal連続関数の集合は環をなす?(2) | Nomal三角不等式(2) | Nomaln番目の有理数を求める公式とは?(24) | Nomal有理点(5) | Nomal教えてください(1) | Nomal数列(0) | Nomal角度(3) | Nomal平面図形(1) | Nomalこの問題が分かりません(7) | Nomal無限級数 助けてください(1) | Nomal等式について。(3) | Nomal四角形が円に内接するための条件(4) | Nomal総合問題(1) |



■記事リスト / ▼下のスレッド
■48412 / 親記事)  模範解答の解説お願いします
□投稿者/ yellowman 一般人(1回)-(2017/12/28(Thu) 21:40:21)
    模範解答
    OA=3 OB=1∠AOB=120°である三角形OABにおいて線分OA1:4に内分する点をC、線分OBを3:2に内分する点をDとしさらに線分ABをt:1−tに内分する点をEとする。

    このときの↑CD=−1/5↑OA+3/5↑OB
    ↑CE=(4/5−t)↑OA+t↑OB

    ↑OA・↑OB=−3/2

    ∠DCE=90°とする場合、↑CD・↑CE=0
    t=3/5となる

    さらに、三角形CDEの外接円と線分ABの2交点のうちEでないほうをF
    とし、AF:FB=u:1-uとすると、u=12/13
    となる。また、線分CDと線分OFの交点をGとすると、OG/GF=13/12と書ける。
    ※u=12/13の出し方
    DF⊥AB
    ↑DF・↑AB=(↑OF−↑OD)・(↑OA−↑OB)
    {(1−u)↑OA+u↑OB−3/5↑OB}・(↑OA−↑OB)
    と記されてました

    ↑AB=↑OB−↑OAになりませんか?

    そこが一番気になりました。

    全体的にもう少し詳しく説明頂けると幸いです。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48401 / 親記事)  三角関数
□投稿者/ 餅入りお好み焼き 一般人(1回)-(2017/12/23(Sat) 11:29:30)
    aを実数の定数として、tを変数とする関数
    f(t)=sin(2t)+sin(t+a)
    のtが実数を動いたときの最大値をM(a)、最小値をm(a)とします。
    aが実数を動いたときのM(a)-m(a)の値域はどうなるのでしょうか?
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48403 / ResNo.1)  Re[1]: 三角関数
□投稿者/ らすかる 一般人(6回)-(2017/12/27(Wed) 01:23:15)
    自作問題ですか?
    多分、
    M(0)-m(0)=√(414+66√33)/8≒3.52 が最大値
    M(π/4)-m(π/4)=25/8=3.125 が最小値
    となると思います。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48398 / 親記事)  微分
□投稿者/ 質問者 一般人(1回)-(2017/12/23(Sat) 00:48:26)
    問:f(x)は微分可、f(-x)=f(x)+x、f'(1)=1、f(1)=0を満たしている。次の値を求めよ。
    (1)f'(-1)

    解1
    f'(-x)=(f(x)+x)'
    =f'(x)+1
    f'(-1)=f'(1)+1
    =2

    解2
    f'(-1)=lim[h→0](f(-1+h)-f(-1))/h
    =lim[h→0](f(1-h)+(1-h)-f(1)-1)/h
    =lim[h→0][(f(1-h)-f(1))/h-1}
    =f'(1)-1
    =0

    解1と2ではどちらが正しいのでしょうか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48399 / ResNo.1)  Re[1]: 微分
□投稿者/ らすかる 一般人(5回)-(2017/12/23(Sat) 02:54:36)
    どちらも間違っています。

    解1は1行目が誤りです。
    f(-x)=f(x)+x の両辺を微分すると
    f'(-x)・(-x)'=(f(x)+x)'
    ですから
    -f'(-x)=(f(x)+x)'=f'(x)+1
    となり
    f'(-x)=-f'(x)-1なので
    f'(-1)=-f'(1)-1=-2
    となります。

    解2は3行目から4行目への式変形が誤りです。
    lim[h→0]{(f(1-h)-f(1))/h-1}
    =lim[h→0]{(f(1+h)-f(1))/(-h)-1}
    =lim[h→0]{-(f(1+h)-f(1))/h-1}
    =-f'(1)-1
    =-2
    となります。

引用返信/返信 [メール受信/OFF]
■48400 / ResNo.2)  Re[2]: 微分
□投稿者/ 質問者 一般人(3回)-(2017/12/23(Sat) 10:18:13)
    とても納得しました。
    ありがとうございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48395 / 親記事)  √3 v.s. √-3
□投稿者/ そうだよな 一般人(1回)-(2017/12/21(Thu) 21:40:09)
    有理数係数の多項式f(x)とg(x)が存在して、
    √3=f(√-3)/g(√-3)
    となることはありますか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48396 / ResNo.1)  Re[1]: √3 v.s. √-3
□投稿者/ らすかる 一般人(4回)-(2017/12/21(Thu) 22:37:21)
    ありません。
    f((√3)i)=a+b(√3)i, g((√3)i)=c+d(√3)i (a,b,c,dは有理数)
    となりますが、(√3)(c+d(√3)i)=a+b(√3)iからa=b=c=d=0となり不適です。

引用返信/返信 [メール受信/OFF]
■48397 / ResNo.2)  Re[2]: √3 v.s. √-3
□投稿者/ そうだよな 一般人(2回)-(2017/12/22(Fri) 08:37:14)
    なるほど
    有難うございます。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▲上のスレッド
■48394 / 親記事)  多項式の解と係数
□投稿者/ ネットで見かけた問題 一般人(1回)-(2017/12/21(Thu) 19:44:33)
    教えて下さい。

    f(x)は係数がすべて整数であるような多項式で、恒等的には0でないとする。
    f(1)=0かつf(3)=0であるならば、f(x)の係数のうちに、-3以下のものがあることを証明せよ。
引用返信/返信 [メール受信/OFF]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター