数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalベクトルについて。(15) | Nomalたけしのコマ大数学科の問題・・・(3) | Nomal数列(2) | Nomal放物線と円(0) | Nomal整数の個数と極限(5) | Nomal数列(2) | Nomal極限(6) | Nomal統計学についての質問(2) | Nomal確率について。(1) | Nomalベクトル場の問題(1) | Nomal楕円面と直線の交点(1) | Nomal面積の最大値(1) | Nomalfw(0) | Nomalどうしても行列式の計算がミスが誰か助けて!!(0) | Nomal箱ひげ図について。(0) | Nomalベクトルについて。(2) | Nomal複素関数(0) | Nomal三角関数の面積(2) | Nomal二次方程式の標準形への変換(1) | Nomal等式(3) | Nomal自然数の逆数和(1) | Nomal五角形(2) | Nomal桁数(1) | Nomal対数不等式(2) | Nomal三角関数(2) | Nomal不等式(2) | Nomal三次方程式(5) | Nomal数列(0) | Nomal複素級数のコーシー積(6) | Nomal統計学(1) | Nomal確率(2) | Nomal三次方程式の解(4) | Nomal確率(5) | Nomal確率(1) | Nomal接する(2) | Nomal整数(0) | Nomal待ち行列(1) | Nomal放物線と接線(2) | Nomal確率(2) | Nomal直角二等辺三角形と円の共通部分(2) | Nomal一次不等式で表される領域の面積(2) | Nomal管理人さんへ(1) | Nomal判別式(2) | Nomal数列の周期と初項(2) | Nomal近似式(2) | Nomal模範解答の解説お願いします(1) | Nomalベクトルについて。(1) | Nomal互いに素(1) | Nomalベクトルについて。(1) | Nomal二次方程式について。(1) | Nomal図形について。(1) | Nomal埋め(1) | Nomalベクトル(1) | Nomal極値(1) | Nomal極値(1) | Nomal代数学の問題(1) | Nomal位相空間の問題(1) | Nomal剰余の定理について。(1) | Nomal積分計算(2) | Nomal広義積分の質問(4) | Nomal積分範囲の極限(2) | Nomal複素数計算(2) | Nomal複素数の実部と虚部の分け方がわかりません(3) | Nomal(削除)(0) | Nomal正接の値(2) | Nomal積分に関する質問(1) | Nomal順列(6) | Nomal確率(1) | Nomal直線の通過領域(1) | Nomal場合の数(3) | Nomal数学検定2級について。(0) | Nomal二次関数について。(4) | Nomal円(5) | Nomal円順列(2) | Nomal不等式(4) | Nomal複素数(1) | Nomal模範解答の解説お願いします(1) | Nomal三角関数(1) | Nomal確率(1) | NomalP(a,b,c) = P(c|b) * P(b|a) 成立条件?(0) | Nomal確率統計についてです(0) | Nomal不等式(4) | Nomal自然数の和と倍数の性質(0) | Nomal円環(3) | Nomal三角関数(1) | Nomal微分(2) | Nomal√3 v.s. √-3(2) | Nomal多項式の解と係数(0) | Nomal有理数と整数(2) | Nomal曲線の長さ(1) | Nomal数的推理(3) | Nomal数的推理(2) | Nomal連立(1) | Nomal複素数(3) | Nomal2階導関数・第2次導関数(0) | Nomal微分(1) | Nomal数学では循環する定義・公理は許されていますか(1) | Nomal実数解の取り得る値の範囲(2) | Nomalクロム ハーツ 首饰 コピー(0) | Nomal自然数の謎(4) |



■記事リスト / ▼下のスレッド
■48855 / 親記事)  自然数の逆数和
□投稿者/ 訛 一般人(1回)-(2018/10/06(Sat) 13:02:16)
    n=10という自然数は、その任意の約数d=1,2,5,10に対して
    d+n/dという値が素数となる。
    1+10/1=11
    2+10/2=7
    5+10/5=7
    10+10/10=11
    というように。
    このような性質をもつ自然数の逆数和が収束することの証明を教えて下さい。


引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48856 / ResNo.1)  Re[1]: 自然数の逆数和
□投稿者/ 訛 一般人(2回)-(2018/10/06(Sat) 13:06:18)
    ヒントにn>2ならn+1が素数なのでnは偶数。
    2+n/2が素数である。
    と書いてあって、本当にその通りだなと思うんですけど
    どうやってヒントを使えばいいのか分かりません。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48846 / 親記事)  五角形
□投稿者/ 工務店能美 一般人(1回)-(2018/09/27(Thu) 15:36:06)
    正五角形ではないが、角の大きさは全て等しい五角形は、
    少なくとも一本の辺の長さが無理数である。

    これって正しいですか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48847 / ResNo.1)  Re[1]: 五角形
□投稿者/ らすかる 一般人(25回)-(2018/09/27(Thu) 17:09:54)
    正しいです。
引用返信/返信 [メール受信/OFF]
■48851 / ResNo.2)  Re[2]: 五角形
□投稿者/ 工務店能美 一般人(2回)-(2018/10/01(Mon) 21:07:51)
    ありがとうございます。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48848 / 親記事)  桁数
□投稿者/ waka 一般人(6回)-(2018/09/28(Fri) 17:46:53)
    P=(1/100)×60^(99)を16進法で表したとき、その整数部分の桁数を求めよ。という問題が分かりません。よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48849 / ResNo.1)  Re[1]: 桁数
□投稿者/ らすかる 一般人(26回)-(2018/09/28(Fri) 20:39:42)
    何を既知としてよいかによって答え方がまるで変わると思いますが、
    とりあえず私が暗記している範囲で
    log[10]2=0.30103、log[10]3=0.4771として計算してよいものとすると

    log[10]P=log[10]{(1/100)×60^(99)}
    =log[10](1/100)+log[10]{60^(99)}
    =-2+99log[10]60
    =-2+99log[10](10×3×2)
    =-2+99(log[10]10+log[10]3+log[10]2)
    =-2+99(1+0.30103+0.4771)
    =-2+99×1.77813
    =174.03487
    log[2]P=log[10]P/log[10]2=174.03487/0.30103≒578.1313
    よってPは2進法で579桁なので、16進法では[(579+3)/4]=145桁。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48840 / 親記事)  対数不等式
□投稿者/ waka 一般人(4回)-(2018/09/25(Tue) 14:43:10)
    定数aが 0<a<1のとき
       log_a^2(a^2-x^2)-log_a(ax)≧0を解け。

    という問題が答えと合いません。解答はa/√(1+a^2)≦x<a です。よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48841 / ResNo.1)  Re[1]: 対数不等式
□投稿者/ らすかる 一般人(23回)-(2018/09/25(Tue) 17:00:37)
    問題の式から0<x<a
    log[a^2](a^2-x^2)-log[a](ax)≧0
    log[a^2](a^2-x^2)≧log[a](ax)
    (1/2)log[a](a^2-x^2)≧log[a](ax)
    log[a](a^2-x^2)≧2log[a](ax)
    log[a](a^2-x^2)≧log[a](a^2x^2)
    a^2-x^2≦a^2x^2
    x^2(a^2+1)≧a^2
    x^2≧a^2/(a^2+1)
    x≧a/√(a^2+1)
    0<a/√(a^2+1)<aなので
    a/√(a^2+1)≦x<a

引用返信/返信 [メール受信/OFF]
■48845 / ResNo.2)  Re[2]: 対数不等式
□投稿者/ waka 一般人(5回)-(2018/09/27(Thu) 10:51:01)
    ありがとうございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▲上のスレッド
■48842 / 親記事)  三角関数
□投稿者/ Galaxy 一般人(1回)-(2018/09/26(Wed) 14:45:37)
    a,b,cは定数で、任意の実数θに対して
    (cos3θ+acos2θ+bcosθ+c)^2+(sin3θ+asin2θ+bsinθ+c)^2=1
    が成り立つならばa=b=c=0であることの証明を教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48843 / ResNo.1)  Re[1]: 三角関数
□投稿者/ らすかる 一般人(24回)-(2018/09/26(Wed) 16:17:55)
    θ=π/2を代入すると (-a+c)^2+(-1+b+c)^2=1 … (1)
    θ=-π/2を代入すると (-a+c)^2+(1-b+c)^2=1 … (2)
    (1)-(2)を整理すると (b-1)c=0 … (a)
    θ=π/3を代入すると (-1-a/2+b/2+c)^2+((√3/2)a+(√3/2)b+c)^2=1 … (3)
    θ=-π/3を代入すると (-1-a/2+b/2+c)^2+(-(√3/2)a-(√3/2)b+c)^2=1 … (4)
    (3)-(4)を整理すると (a+b)c=0 … (b)
    θ=2π/3を代入すると (1-a/2-b/2+c)^2+(-(√3/2)a+(√3/2)b+c)^2=1 … (5)
    θ=-2π/3を代入すると (1-a/2-b/2+c)^2+((√3/2)a-(√3/2)b+c)^2=1 … (6)
    (5)-(6)を整理すると (a-b)c=0 … (c)
    c≠0と仮定すると(b)(c)からa+b=0,a-b=0なのでa=b=0
    すると(a)が成り立たず不適、従ってc=0
    (1)+(2)を整理してc=0を代入すると a^2+b^2=2b … (7)
    (3)+(5)を整理してc=0を代入すると a^2+b^2=b … (8)
    (7)-(8)からb=0、これを(8)に代入してa=0
    よって任意の実数θについて与式が成り立つならばa=b=c=0

引用返信/返信 [メール受信/OFF]
■48844 / ResNo.2)  Re[2]: 三角関数
□投稿者/ Galaxy 一般人(1回)-(2018/09/26(Wed) 20:44:55)
    有り難うございました。
    とても助かりました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター