数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal写像の問題です。(0) | Nomal離散数学 有向グラフの問題(0) | Nomal原始関数問題(1) | Nomal三角形と円の関係について(0) | Nomal|e^(icosθ)|、|e^(isinθ)|について(2) | Nomal大学数学 重積分(0) | Nomal簡単な論理式〜変な質問ですみませんが・・・(2) | Nomal割り算(1) | Nomal確率の問題です。大至急お願い致します(0) | Nomal整数解(7) | Nomal全ての 整数解 等(4) | Nomal完璧なのコピーbuytowe(0) | Nomal素数(1) | Nomal指数計算の練習(2) | Nomal微分積分(0) | Nomalテイラー展開(0) | Nomal合同式(1) | Nomalエルミート行列(0) | Nomal【大学数学】貨幣需要関数(0) | Nomal陰関数(0) | Nomalフェルマーの最終定理の証明(6) | Nomal統計学(0) | Nomalベクトル空間(0) | Nomal複素数の三角不等式(引き算)(2) | Nomal微分の問題(0) | Nomal体積(1) | Nomalフェルマーの最終定理の証明(z=x+rとおく方法)(1) | Nomal微分可能(2) | Nomalチェビシェフ 偏差値(0) | Nomal線形代数(1) | Nomal複素積分(2) | Nomalテイラー展開(2) | Nomal線形変換(1) | Nomal大学数学 線形代数 部分空間の証明(0) | Nomal証明問題(1) | Nomal一次結合と一次独立(0) | Nomal証明問題です(0) | Nomalz^5 = -1 を解く(2) | Nomal空間上の点(2) | Nomal複素関数の部分分数分解(4) | Nomal熱力学の本に出てくる式変形がわかりません。(0) | Nomalピタゴラス数の求め方(0) | Nomal二項定理を使ったピタゴラスの定理の証明(0) | Nomal二項定理を使ったフェルマーの最終定理の証明(0) | Nomal2次方程式(3) | Nomal数学A 図形の計算(0) | Nomalある式の微分における式変形について(2) | Nomal3次元空間の点(2) | Nomal線形代数」(0) | Nomal統計学の問題(0) | Nomal(削除)(3) | Nomal1/(z^2-1) を z = 1 でローラン展開する。(2) | Nomal無限等比級数について(2) | Nomalcosの不等式(2) | Nomal品質の服(0) | Nomal複素平面上の円(2) | Nomal積分の解き方について(0) | Nomal期待値(2) | Nomal3の個数(7) | Nomal複素数の関数(5) | Nomal分数関数の積分(2) | Nomalベクトルについて。(1) | Nomalベクトルについて。(0) | Nomalベクトル解析(1) | Nomal線形代数 証明(0) | Nomalベクトル解析のスカラー場について(2) | Nomalフーリエ展開とフーリエ変換(0) | Nomal加速度の次元と速度の次元(1) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal第2可算公理(0) | Nomalフェルマーの最終定理の簡単な証明9(25) | Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal無限和(2) | Nomal大学一年 線形代数(1) | Nomal大学で出された行列の課題がわかりません。(1) | Nomal広義積分(0) | Nomal 至急この問題を解説していただきたいです(0) | Nomal有理数(1) | Nomal論理関数(0) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal数列の一般項(2) | Nomal統計学 二項分布(0) | Nomal連立微分方程式(1) | Nomal連立方程式(3) | Nomal解析学(2) | Nomal行列のn乗(1) | Nomal色々な方法 で(0) | Nomal初期値問題(1) | Nomal解析学(1) | Nomal統計学 確率密度関数 分布関数 確率(0) | Nomal統計学についての質問(3) | Nomal対数尤度関数について!(0) | Nomal関数について(0) |



■記事リスト / ▼下のスレッド
■50585 / 親記事)  大学数学 重積分
□投稿者/ chatty0811 一般人(1回)-(2021/01/09(Sat) 03:03:01)
    (1)∫∫D (2x + 3y)dxdy,D:0≤x≤1,2≤y≤4
    (2)∫∫D xdxdy,D:y≤x≤3,0≤y≤3
    (3)∫∫D sinxdxdy,D:0≤x≤π,0≤y≤sinx
    (4)∫∫D 1/{(x−1)(y−2)}dxdy,Dは(2,3),(3,3),(3,6),(2,6)を頂点とする長方形の周および内部
    (5)∫∫D (1+1/x)^2dxdy,Dは(2,1),(3,1),(3,2)を頂点とする三角形の周および内部
    (6)∫∫D e^(2x+y+1)dxdy,D:x≥0,y≥0,x/2+y/4≤1
    (7)∫∫D (1−x−2y)dxdy,Dは3直線y=x,x=0,y=−2x+3に囲まれた三角形の周および内部
    (8)∫∫D (x^2+y^2)dxdy,D:1≤x^2+y^2≤4
    (9)∫∫D xdxdy,D:x^2+y^2≤1,0≤y≤2x
    (10)∫∫D e^(−x^2−y^2/9)dxdy,D:x≥0,y≥0
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50581 / 親記事)  簡単な論理式〜変な質問ですみませんが・・・
□投稿者/ 2666 一般人(4回)-(2021/01/07(Thu) 21:52:01)
     実数 x、y について
      @x≧y>0 ⇒ x>0
      Ax≧y>0 ⇒ x≧0
     普通に考えるとxはy以上で、そのyは0より大きいのだから@が真かと思うのですが、
      x≧0
    は x=0 か x>0 のどちらかでいいわけですからAも真と考えていいのでしょうか?

引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50582 / ResNo.1)  Re[1]: 簡単な論理式〜変な質問ですみませんが・・・
□投稿者/ らすかる 一般人(1回)-(2021/01/07(Thu) 22:21:35)
    Aも真です。
引用返信/返信 [メール受信/OFF]
■50583 / ResNo.2)  Re[2]: 簡単な論理式〜変な質問ですみませんが・・・
□投稿者/ 2666 一般人(5回)-(2021/01/08(Fri) 14:32:15)
    回答ありがとうございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50579 / 親記事)  割り算
□投稿者/ 雪坊主 一般人(1回)-(2020/12/25(Fri) 08:40:36)
    3で割ると1余る
    5で割ると1余る
    7で割ると1余る
    11で割ると6余る
    これを満たす最小の正の整数を求めよ

    これはどうすれば解けますか?
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■50580 / ResNo.1)  Re[1]: 割り算
□投稿者/ X 一般人(1回)-(2020/12/25(Fri) 08:46:45)
    ヒントだけ。
    3,5,7の最小公倍数は105
    よって問題は
    105で割ると1余り
    11で割ると6余る
    最小の正の整数を求める問題となります。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50578 / 親記事)  確率の問題です。大至急お願い致します
□投稿者/ おさむ 一般人(1回)-(2020/12/17(Thu) 18:30:48)

    1.事象A.B.Cについて、AとB、BとC、CとAがそれぞれ独立であるとき、ABCは独立であるか。独立であるならそれを示し、そうでないなら反例を示しなさい。
    2.Xを標準正規分布に従うものとする。
    (1)Xの密度関数f(x)=(1/√2π)e^-x^2/2の導関数f´(x)をf(x)を用いて表せ
    (2)(1)と部分積分を用いることにより、Xの4次モーメントを計算せよ
1080×750 => 250×173

20201217_154942.jpg
/145KB
引用返信/返信 [メール受信/OFF]



■記事リスト / ▲上のスレッド
■49020 / 親記事)  整数解
□投稿者/ q 一般人(1回)-(2019/02/13(Wed) 21:52:58)
    5 x^2-2 x y-16 x-4 y^2-18 y+2=0    の 整数解を全て 是非求めて下さい;
引用返信/返信 [メール受信/OFF]

▽[全レス7件(ResNo.3-7 表示)]
■50569 / ResNo.3)  Re[3]: 整数解
□投稿者/ ポートニック 一般人(2回)-(2020/12/12(Sat) 06:07:48)
    先に結論を書いておきます
    そのあとに幅ひろく通用する導出過程を記しておきます
    長くなるのでここのページでは結果だけとします

    α=√21, ε=(5+α)/2, s=19+9α, t=2+8α,
    Kを有理数体にαを添加して得られる体とし,
    有理整数環ZのKにおける整閉包をAとする.

    KはQ上のベクトル空間として基底{1,α}を持つので
    各w∈Kに対して,w=p+qαを満たすp,q∈Qが一意的に取れるが
    f(w)=p, g(w)=q によりKからQへの関数f,gを定める.

    x,yが問題の方程式を満たす整数であるとき,
    以下の(1)-(4)のいずれかが成立し,また逆も成立する:

    (1)
    ある整数nが存在して
    u=f(sε^n), v=g(sε^n) とおくと
    x = (23+u)/21
    y = (-x-v-9)/4
    このとき,n≡0(mod 6)

    (2)
    ある整数nが存在して
    u=f(tε^n), v=g(tε^n) とおくと
    x = (23-u)/21
    y = (-x-v-9)/4
    このとき,n≡4(mod 6)

    (3)
    ある整数nが存在して
    u=f(sε^n), v=g(sε^n) とおくと
    x = (23+u)/21
    y = (-x+v-9)/4
    このとき,n≡2(mod 6)

    (4)
    ある整数nが存在して
    u=f(tε^n), v=g(tε^n) とおくと
    x = (23-u)/21
    y = (-x+v-9)/4
    このとき,n≡2(mod 6)

    (3),(4)はn≡2(mod 6)の部分は同じだが
    u,vの取り方とx,yの対応の仕方が異なる


    念の為,小さい解をいくつか求めてみる

    (1)のパターンから導かれる解:
    n= 0 とすれば
    (u,v)=(19,9) より (x,y)=(2,-5)
    n= -6 とすれば
    (u,v)=(-134549,29361) より (x,y)=(-6406,-5741)
    n= 6 とすれば
    (u,v)=(364411,79521) より (x,y)=(17354,-24221)

    (2)のパターンから導かれる解:
    n=4 とすれば
    (u,v)=(10187,2223) より (x,y)=(-484,-437)
    n= -2 とすれば
    (u,v)=(-397,87) より (x,y)=(20,-29)

    (3)のパターンから導かれる解:
    n=2 とすれば
    (u,v)=(691,151) より (x,y)=(34,27)

    (4)のパターンから導かれる解:
    n=2 とすれば
    (u,v)=(443,97) より (x,y)=(-20,27)

    勿論きりがないので具体的を挙げるのはこれで終わりとします
    解の表現としては整数係数の漸化式で与える方法もありますが
    すでに構成した表現から漸化式を得るの難しくないでしょう

引用返信/返信 [メール受信/OFF]
■50570 / ResNo.4)  Re[4]: 整数解
□投稿者/ ポートニック 一般人(3回)-(2020/12/12(Sat) 06:11:20)
    以下は導出過程です
    記号はさっきの記事を継承します

    まず必要条件から絞ることを考える
    5x^2-2xy-16x-4y^2-18y+2=0
    がある整数x,yに対して成立していたとする

    -4y = x+9 ± √(21x^2-46x+89) ...(△)
    となるように符号を選ぶことができる

    21x^2-46x+89 = w^2 を満たす整数wが取れる
    よって, (21x-23)^2 - 21w^2 = -1340 を得る
    z = 21x-23 とおけば z^2 - 21w^2 = -1340 ...(☆)

    ここで I=(z-wα)A とおく
    (つまり,Iはz-wαで単生成するAのイデアル)

    以下, N(.)はAのイデアルのノルム関数とする.

    ☆より N(I) = |1340| = 2^2*5*17 である

    Kの判別式は 21 であるので
    (21/5) = (21/67) = 1 より
    5A,67A は以下のように異なる素イデアルの積に分解する:
    5A = (5,α+1)(5,α-1)
    67A = (67,α+17)(67,α-17)

    また,2Aは既に素イデアルである

    したがって N(I)= 2^2*5*17 とあわせて
    Iは以下の4つのいずれかに一致している:

    2A(5,α+1)(67,α+17)
    2A(5,α+1)(67,α-17)
    2A(5,α-1)(67,α+17)
    2A(5,α-1)(67,α-17)

    それぞれのイデアルの積を計算すると

    (19 + 9α)A,(2 - 8α)A,(19 - 9α)A,(2 + 8α)A となる

    (共役を考えれば4つのうち前半の2つだけで残りがわかる)

    さて,Aの基本単数を計算することになるが
    そのためには |p^2-21q^2|=4 を満たす最小の正整数解を求めればよい.
    (p,q)=(5,1)が要件を満たすので冒頭で定めたεは実は基本単数である.
    (一般には正則連分数展開から2次体の基本単数は高速に求まる)

    I = (19 + 9α)A のときを考える
    このとき, (z-wα)A = (19 + 9α)A であるので
    z-wα = ±(19 + 9α)ε^n を満たす整数nが取れる
    εの共役は 1/ε であるのだから
    I = (19 - 9α)A のケースを考える必要はない

    I = (2 + 8α)A のときを考える
    このとき, (z-wα)A = (2 + 8α)A であるので
    z-wα = ±(2 + 8α)ε^n を満たす整数nが取れる
    εの共役は 1/ε であるのだから
    I = (2 - 8α)A のケースを考える必要はない

    まとめると ある整数nが存在して
    z-wα = ±sε^n または z-wα = ±tε^n
    が成立するように符号を選ぶことができる

    z = 21x-23 だから z≡ -2 (mod αA) となる
    よって, ε,s,t をmod αA で考えることで
    nが偶数であることがいえる

    より正確には,
    z-wα = sε^n または z-wα = -tε^n
    がある偶数nに対して成立するとなる,

    あとは△の右辺が4の倍数である条件を考えるだけでよい.
    そのためには ε^6≡1 (mod 4A) などに注意して
    nをmod 6 で類別し s,t,ε^2,ε^4 などをmod 4Aで計算する.
    ここからはひたすらルーチンなので ここで終わりとする
    (絞れて得られた解が実際に解になることは難しくない)

    以上の解法を4ステップでいうなら
    まず判別式、次にイデアルの計算、そして基本単数、最後にmodulo計算
    (実は今回のパターンではAは単項イデアル整域である
    そのことはたとえばMinkowski's boundを用いれば易い
    しかしながらAがPIDでなくても上記解法に不都合は生じない)

    導出過程の概略ここまで



引用返信/返信 [メール受信/OFF]
■50571 / ResNo.5)  Re[5]: 整数解
□投稿者/ 2666 一般人(3回)-(2020/12/12(Sat) 14:51:35)
     高校数学レベルでの解き方はできないのですか?

引用返信/返信 [メール受信/OFF]
■50572 / ResNo.6)  Re[6]: 整数解
□投稿者/ ポートニック 一般人(4回)-(2020/12/14(Mon) 03:13:51)
    No50571に返信(2666さんの記事)
    >  高校数学レベルでの解き方はできないのですか?
    >

    原理的には可能でしょう
    ただしデタラメに2元2次の不定方程式を与えた時,
    どういうアプローチがあるかというのを
    行きあたりばったりではなく 系統的に説明する場合は
    高校数学の範疇でとどまるのは些か不便だとおもわれます

    今回は結果をみてもわかるとおり少し複雑なので
    たとえば幾分シンプルなケース: x^2 -2y^2 = 1
    これぐらいなら高校数学の問題と出題しても大丈夫だとおもわれます
    (ただこれはこれで有名すぎるかもしれないが...)

    私は本題の出題者ではないし 本題が高校数学の問題として適切かどうかは保留とします
引用返信/返信 [メール受信/OFF]
■50577 / ResNo.7)  Re[7]: 整数解
□投稿者/ q 一般人(1回)-(2020/12/15(Tue) 15:34:32)
    No50572に返信(ポートニックさんの記事)
    > ■No50571に返信(2666さんの記事)
    >> 高校数学レベルでの解き方はできないのですか?
    >>
    >
    > 原理的には可能でしょう
    > ただしデタラメに2元2次の不定方程式を与えた時,
    > どういうアプローチがあるかというのを
    > 行きあたりばったりではなく 系統的に説明する場合は
    > 高校数学の範疇でとどまるのは些か不便だとおもわれます
    >

    C;5 x^2-2 x y-16 x-4 y^2-18 y+2=0
         は双曲線であり
         
      漸近線が
    -(((105 x+(21 Sqrt[21]-21) y+53 Sqrt[21]-168) (-105 x+(21+21 Sqrt[21]) y+53 Sqrt[21]+168))/2205)=0
    y=1/84 (-Sqrt[21] Sqrt[441 x^2-966 x+529]-21 x-189),
    y=1/84 (Sqrt[21] Sqrt[441 x^2-966 x+529]-21 x-189)
    である ことから
    C∩Z^2 を 求める方法を 是非教えてください;


引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-7]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター