数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
UpDate因数分解(1) | Nomal常用対数と桁数の関係(2) | Nomal(削除)(2) | Nomal行列を含む偏微分(0) | Nomalカタラン数(4) | Nomal無限級数(1) | Nomalスーパコピーvog.agvol.com/brand-70-c0.html ボーイロンドンブラドスパーピー(0) | Nomal大学数学 4次多項式 フェラーリの解法(0) | Nomalかんたんなフェルマーの最終定理の証明(19) | Nomal写像の問題です。(0) | Nomal離散数学 有向グラフの問題(0) | Nomal原始関数問題(1) | Nomal三角形と円の関係について(0) | Nomal|e^(icosθ)|、|e^(isinθ)|について(2) | Nomal大学数学 重積分(0) | Nomal簡単な論理式〜変な質問ですみませんが・・・(2) | Nomal割り算(1) | Nomal確率の問題です。大至急お願い致します(0) | Nomal整数解(7) | Nomal全ての 整数解 等(4) | Nomal完璧なのコピーbuytowe(0) | Nomal素数(1) | Nomal指数計算の練習(2) | Nomal微分積分(0) | Nomalテイラー展開(0) | Nomal合同式(1) | Nomalエルミート行列(0) | Nomal【大学数学】貨幣需要関数(0) | Nomal陰関数(0) | Nomalフェルマーの最終定理の証明(6) | Nomal統計学(0) | Nomalベクトル空間(0) | Nomal複素数の三角不等式(引き算)(2) | Nomal微分の問題(0) | Nomal体積(1) | Nomalフェルマーの最終定理の証明(z=x+rとおく方法)(1) | Nomal微分可能(2) | Nomalチェビシェフ 偏差値(0) | Nomal線形代数(1) | Nomal複素積分(2) | Nomalテイラー展開(2) | Nomal線形変換(1) | Nomal大学数学 線形代数 部分空間の証明(0) | Nomal証明問題(1) | Nomal一次結合と一次独立(0) | Nomal証明問題です(0) | Nomalz^5 = -1 を解く(2) | Nomal空間上の点(2) | Nomal複素関数の部分分数分解(4) | Nomal熱力学の本に出てくる式変形がわかりません。(0) | Nomalピタゴラス数の求め方(0) | Nomal二項定理を使ったピタゴラスの定理の証明(0) | Nomal二項定理を使ったフェルマーの最終定理の証明(0) | Nomal2次方程式(3) | Nomal数学A 図形の計算(0) | Nomalある式の微分における式変形について(2) | Nomal3次元空間の点(2) | Nomal線形代数」(0) | Nomal統計学の問題(0) | Nomal(削除)(3) | Nomal1/(z^2-1) を z = 1 でローラン展開する。(2) | Nomal無限等比級数について(2) | Nomalcosの不等式(2) | Nomal品質の服(0) | Nomal複素平面上の円(2) | Nomal積分の解き方について(0) | Nomal期待値(2) | Nomal3の個数(7) | Nomal複素数の関数(5) | Nomal分数関数の積分(2) | Nomalベクトルについて。(1) | Nomalベクトルについて。(0) | Nomalベクトル解析(1) | Nomal線形代数 証明(0) | Nomalベクトル解析のスカラー場について(2) | Nomalフーリエ展開とフーリエ変換(0) | Nomal加速度の次元と速度の次元(1) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal第2可算公理(0) | Nomalフェルマーの最終定理の簡単な証明9(25) | Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal無限和(2) | Nomal大学一年 線形代数(1) | Nomal大学で出された行列の課題がわかりません。(1) | Nomal広義積分(0) | Nomal 至急この問題を解説していただきたいです(0) | Nomal有理数(1) | Nomal論理関数(0) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal数列の一般項(2) | Nomal統計学 二項分布(0) | Nomal連立微分方程式(1) | Nomal連立方程式(3) |



■記事リスト / ▼下のスレッド
■48840 / 親記事)  対数不等式
□投稿者/ waka 一般人(4回)-(2018/09/25(Tue) 14:43:10)
    定数aが 0<a<1のとき
       log_a^2(a^2-x^2)-log_a(ax)≧0を解け。

    という問題が答えと合いません。解答はa/√(1+a^2)≦x<a です。よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48841 / ResNo.1)  Re[1]: 対数不等式
□投稿者/ らすかる 一般人(23回)-(2018/09/25(Tue) 17:00:37)
    問題の式から0<x<a
    log[a^2](a^2-x^2)-log[a](ax)≧0
    log[a^2](a^2-x^2)≧log[a](ax)
    (1/2)log[a](a^2-x^2)≧log[a](ax)
    log[a](a^2-x^2)≧2log[a](ax)
    log[a](a^2-x^2)≧log[a](a^2x^2)
    a^2-x^2≦a^2x^2
    x^2(a^2+1)≧a^2
    x^2≧a^2/(a^2+1)
    x≧a/√(a^2+1)
    0<a/√(a^2+1)<aなので
    a/√(a^2+1)≦x<a

引用返信/返信 [メール受信/OFF]
■48845 / ResNo.2)  Re[2]: 対数不等式
□投稿者/ waka 一般人(5回)-(2018/09/27(Thu) 10:51:01)
    ありがとうございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48842 / 親記事)  三角関数
□投稿者/ Galaxy 一般人(1回)-(2018/09/26(Wed) 14:45:37)
    a,b,cは定数で、任意の実数θに対して
    (cos3θ+acos2θ+bcosθ+c)^2+(sin3θ+asin2θ+bsinθ+c)^2=1
    が成り立つならばa=b=c=0であることの証明を教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48843 / ResNo.1)  Re[1]: 三角関数
□投稿者/ らすかる 一般人(24回)-(2018/09/26(Wed) 16:17:55)
    θ=π/2を代入すると (-a+c)^2+(-1+b+c)^2=1 … (1)
    θ=-π/2を代入すると (-a+c)^2+(1-b+c)^2=1 … (2)
    (1)-(2)を整理すると (b-1)c=0 … (a)
    θ=π/3を代入すると (-1-a/2+b/2+c)^2+((√3/2)a+(√3/2)b+c)^2=1 … (3)
    θ=-π/3を代入すると (-1-a/2+b/2+c)^2+(-(√3/2)a-(√3/2)b+c)^2=1 … (4)
    (3)-(4)を整理すると (a+b)c=0 … (b)
    θ=2π/3を代入すると (1-a/2-b/2+c)^2+(-(√3/2)a+(√3/2)b+c)^2=1 … (5)
    θ=-2π/3を代入すると (1-a/2-b/2+c)^2+((√3/2)a-(√3/2)b+c)^2=1 … (6)
    (5)-(6)を整理すると (a-b)c=0 … (c)
    c≠0と仮定すると(b)(c)からa+b=0,a-b=0なのでa=b=0
    すると(a)が成り立たず不適、従ってc=0
    (1)+(2)を整理してc=0を代入すると a^2+b^2=2b … (7)
    (3)+(5)を整理してc=0を代入すると a^2+b^2=b … (8)
    (7)-(8)からb=0、これを(8)に代入してa=0
    よって任意の実数θについて与式が成り立つならばa=b=c=0

引用返信/返信 [メール受信/OFF]
■48844 / ResNo.2)  Re[2]: 三角関数
□投稿者/ Galaxy 一般人(1回)-(2018/09/26(Wed) 20:44:55)
    有り難うございました。
    とても助かりました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48824 / 親記事)  不等式
□投稿者/ 虚言症 一般人(1回)-(2018/09/21(Fri) 08:33:32)
    において

    が成り立つことの証明を教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48838 / ResNo.1)  Re[1]: 不等式
□投稿者/ らすかる 一般人(22回)-(2018/09/23(Sun) 14:22:56)
    与不等式の左辺はx=πに関して対称なので、0<x≦πに関して示せば十分。

    0<x≦π/2のとき
    sinx>x-x^3/6=(-x^3+6x)/6
    cosx<1-x^2/2+x^4/24=(x^4-12x^2+24)/24
    2sin(x/2)<xから
    log(2sin(x/2))<logx<(x-1)-(x-1)^2/2+(x-1)^3/3
    =(2x^3-9x^2+18x-11)/6
    なので
    (π-x)sinx-2(cosx)log(2sin(x/2))
    >(3-x)(-x^3+6x)/6-2(x^4-12x^2+24)/24・(2x^3-9x^2+18x-11)/6
    =(-2x^7+9x^6+6x^5-85x^4+132x^3+12x^2-216x+264)/72
    =(2t^7+129xt^5+(783x^3+4796)t^2+3(5x+36)t^3+17654t+41984)/157464+1
    >1 (ただしt=5-3x>0)

    π/2≦x≦πのときy=π-xとおくと0≦y≦π/2で
    (π-x)sinx-2(cosx)log(2sin(x/2))
    =ysin(π-y)-2(cos(π-y))log(2sin((π-y)/2))
    =ysiny+2(cosy)log(2cos(y/2))
    siny>y-y^3/6=(-y^3+6y)/6
    cosy>1-y^2/2=(-y^2+2)/2
    2cos(y/2)>(16-3y)/8から
    log(2cos(y/2))>log((16-3y)/8)>(8-3y)/8-((8-3y)/8)^2/2
    =(-9y^2+64)/128
    なので
    ysiny+2(cosy)log(2cos(y/2))
    >y(-y^3+6y)/6+2(-y^2+2)/2・(-9y^2+64)/128
    =(-37y^4+138y^2+384)/384
    =y^2(138-37y^2)/384+1
    ≧1

    ∴(π-x)sinx-2(cosx)log(2sin(x/2))≧1

引用返信/返信 [メール受信/OFF]
■48839 / ResNo.2)  Re[2]: 不等式
□投稿者/ 虚言症 一般人(2回)-(2018/09/24(Mon) 22:50:11)
    有り難うございます。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48827 / 親記事)  三次方程式
□投稿者/ 大阪なほみ 一般人(2回)-(2018/09/22(Sat) 16:04:38)
    実数a,b,cが0<a<c<b<1を満たすとき、
    x^3-ax^2+(b-3)x+2a-c=0
    の解は全て絶対値が2以下であることを示せ。

    教えて下さい。よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス5件(ResNo.1-5 表示)]
■48828 / ResNo.1)  Re[1]: 三次方程式
□投稿者/ らすかる 一般人(15回)-(2018/09/22(Sat) 18:19:08)
    x>2のとき
    x^3-ax^2+(b-3)x+2a-c=(x-2)(x^2+x-1)+(x^2-2)(1-a)+b(x-1)+(b-c)>0
    x<-2のとき
    x^3-ax^2+(b-3)x+2a-c=(x+2){x^2+(1-x)}-(x+1)^2-ax^2+bx-(c-a)-(1-a)<0
    ∴解の絶対値は2以下

引用返信/返信 [メール受信/OFF]
■48829 / ResNo.2)  Re[2]: 三次方程式
□投稿者/ 大阪なほみ 一般人(3回)-(2018/09/22(Sat) 20:07:36)
    ひとつ質問よろしいでしょうか。
    虚数解をもつことはないのでしょうか?
引用返信/返信 [メール受信/OFF]
■48831 / ResNo.3)  Re[3]: 三次方程式
□投稿者/ らすかる 一般人(16回)-(2018/09/22(Sat) 23:28:17)
    ごめんなさい、勝手に実数範囲と思い込んでいました。
    でも虚数解を持つかどうか調べたところ、
    この方程式はたまたま全ての解が実数ですので
    (そのことを示す必要はありますが)大丈夫でした。

引用返信/返信 [メール受信/OFF]
■48836 / ResNo.4)  Re[4]: 三次方程式
□投稿者/ らすかる 一般人(21回)-(2018/09/23(Sun) 07:31:02)
    解答を以下のように訂正します。

    f(x)=x^3-ax^2+(b-3)x+2a-cとすると
    f(-2)=-(2a+2b+c+2)<0
    f(-1)=a+(1-b)+(1-c)>0
    f(1)=-{(1-a)+(1-b)+c}<0
    f(2)=2(1-a)+(b-c)+b>0
    なので、f(x)=0は(-2,-1),(-1,1),(1,2)の各区間内に実数解を一つずつ持つ。
    従ってf(x)=0の解は全て絶対値が2以下。

引用返信/返信 [メール受信/OFF]
■48837 / ResNo.5)  Re[5]: 三次方程式
□投稿者/ 大阪なほみ 一般人(4回)-(2018/09/23(Sun) 11:36:47)
    ありがとうございます!!
    こうやれば良かったんですね。
    非常に爽快な解法を教えていただき
    大変勉強になりました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-5]



■記事リスト / ▲上のスレッド
■48830 / 親記事)  数列
□投稿者/ 楼蘭山 一般人(1回)-(2018/09/22(Sat) 20:44:15)
    数列{a[n]}は、a[1]=1/2であり、
    全てのn≧2に対して
    a[n]=(1/2)Σ[k=1,n-1]a[k]a[n-k]
    を満たしている。
    (1)全てのn≧2に対して、
    Σ[i=1,n-1]a[i](Σ[j=1,n-i]a[j])=2Σ[k=2,n]a[k]
    および
    2na[n]=1-Σ[k=1,n-1]a[k]
    が成り立つことを示せ。
    (2)a[n]をnで表せ。



    (1)から分かりません。お願いします。
引用返信/返信 [メール受信/OFF]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター