数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal京大特色(1) | Nomal高校の範囲での証明(2) | Nomalこの表の見方を教えてください。(0) | Nomalヒルベルト空間(0) | Nomal$D_n$加群のフーリエ変換と関数のフーリエ変換との関係について(0) | Nomal群の問題(5) | Nomal合同式の計算(2) | Nomalプログラミング言語BASIC言語について。(14) | Nomal統計/区画幅について(3) | Nomal2変数関数の極値条件(2) | Nomal素数生成法について(0) | Nomalsupreme 偽物(0) | Nomal合同式の計算(4) | Nomal縦曲線について(0) | Nomal銃曲線における計画高ついて(0) | Nomal測量学について(0) | Nomal訂正です(1) | Nomal対数の取り方、シグモイド、ロジスティック関数(0) | Nomal緩和曲線の開始位置と終了地点および途中の高さxについて(0) | Nomalf'(x) の増減の判定方法(3) | Nomal三角形と内接円について改(1) | Nomal三角形と内接円について。(1) | Nomal増減表の作り方(6) | Nomal4次関数(3) | Nomal約数を mod 13 で見る(1) | Nomal三葉曲線の長さについて(2) | Nomal自作問題(3) | Nomalフェルマーの最終定理の簡単な証明9(23) | Nomal(削除)(0) | Nomalケプラー方程式による惑星の会合計算(0) | Nomal追いかけ算 惑星会合時期(1) | Nomal担当者の時間割(2) | Nomal三次関数と長方形(4) | Nomal(削除)(0) | Nomal屑スレを下げるための問題(2) | Nomal3次関数について。(8) | Nomal必要十分条件の証明(3) | Nomalフェルマーの最終定理の簡単な証明8(74) | Nomal合コン(4) | Nomal基本的な確率(2) | Nomal同型写像(0) | Nomal正2n角形と確率(4) | Nomal中学生でも解けそうな入試問題001(1) | Nomalご教示ください(5) | Nomal階段行列の作り方(4) | Nomal統計学の問題です(0) | Nomal3の倍数(4) | Nomalラプラス方程式 境界条件(0) | Nomal対偶について(8) | Nomal偶数と奇数(8) | Nomalsinの関係(2) | Nomal2^(1/3)とωと√3(4) | Nomal supreme コート(0) | Nomalフェルマーの最終定理の簡単な証明7(101) | Nomal目的の形への行列の三角化(2) | Nomal(削除)(2) | Nomal等角写像の問題です。(2) | Nomal掲示板について。(1) | Nomalフェルマーの定理 RSA暗号(1) | Nomalフェルマーの最終定理の簡単な証明6(101) | Nomalオイラーの公式(3) | Nomalグッチンコピー(0) | Nomal6次方程式(2) | Nomalベクトル解析 証明(0) | Nomal位相数学、位相空間(0) | Nomal実生活に活きる確率(0) | Nomalオイラーの公式 導関数の定義(2) | Nomalオイラーの公式(3) | Nomal2階常微分方程式 (1) | Nomalオイラーの公式(0) | Nomalフェルマーの最終定理の簡単な証明5(101) | Nomal数学について。(1) | Nomal順列(4) | Nomal線形代数(1) | Nomal整数問題(1) | Nomalフェルマーの最終定理の簡単な証明4(101) | Nomal大小の比較(7) | Nomalシミュレーションについて(1) | Nomal期待値(2) | Nomal数学について。(1) | Nomalフーリエ変換の求め方(1) | Nomalisometric matrix,p-ノルムについて(0) | Nomalフェルマーの最終定理の簡単な証明3(76) | Nomald(cos^2θ)/dθ=と置けるような相似の図を見つけたいです!(0) | Nomal1/ cos^2θの微分を画像の図を用いて解きたい!(0) | Nomalラグランジュの剰余項(1) | Nomallog2とマクローリン展開についての証明(1) | Nomal極限を求める(大学数学)(1) | Nomal三角方程式(2) | Nomal確率密度(2) | Nomal方程式(2) | Nomal多項式の係数(1) | Nomalフェルマーの最終定理の簡単な証明2(101) | Nomal複素平面上の領域について(0) | Nomal数学検定について。(0) | Nomal複素解析(2) | Nomal定積分と体積(1) | Nomal極限値(3) | Nomal複素解析(7) | Nomalフェルマーの最終定理の簡単な証明(101) |



■記事リスト / ▼下のスレッド
■47847 / 親記事)  位相空間の問題
□投稿者/ ユークリッド 一般人(1回)-(2017/01/07(Sat) 23:55:27)
    (X,d)を完備距離空間、A⊂Xとする。AはdのAへの制限により距離空間となる。このとき、次の条件が同値であることを示せ。

    (1)(A,d)は完備。

    (2)Aは(X,d)の閉集合。

    全然分かりません。よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48513 / ResNo.1)  Re[1]: 位相空間の問題
□投稿者/ muturajcp 一般人(3回)-(2018/08/16(Thu) 08:14:07)
    (X,d)を完備距離空間、A⊂Xとする
    AはdのAへの制限により距離空間となる
    N=(全自然数)
    clA=(Aの閉包)とする
    (1)→(2)の証
    (A,d)は完備
    b∈cl(A)とする
    任意の自然数n∈Nに対して
    a_n∈{x∈X|d(x,b)<1/n}∩A
    となるa_nが存在する
    任意のε>0に対して
    n_0>1/εとなる自然数n_0がある
    n>n_0となる任意の自然数nに対して
    d(a_n,b)<1/n<1/n_0<ε
    となるから
    lim_{n→∞}a_n=b
    {a_n}_{n∈N}はbに収束する
    収束する数列はコーシー列だから
    {a_n}_{n∈N}は完備Aのコーシー列となるから
    Aの要素に収束するから
    b∈A
    だから
    cl(A)=A
    だから
    ∴Aは(X,d)の閉集合

    (2)→(1)の証
    Aは(X,d)の閉集合
    A⊃{a_n}_{n∈N}はコーシー列
    とする
    (X,d)は完備だから
    lim_{n→∞}a_n=b∈X
    となるbがある
    任意のε>0に対して
    ある自然数n_0が存在して
    n>n_0となる任意の自然数nに対して
    d(a_n,b)<ε
    だから
    a_{n_0+1}
    ∈{x∈X|d(x,b)<ε}∩{a_n}_{n∈N}
    ⊂{x∈X|d(x,b)<ε}∩A
    だから
    {x∈X|d(x,b)<ε}∩A≠φ
    だから
    b∈cl(A)
    Aは閉集合だから
    b∈cl(A)=A
    だから
    b∈A
    Aのコーシー列はAの要素に収束するから
    ∴(A,d)は完備
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48466 / 親記事)  剰余の定理について。
□投稿者/ コルム 一般人(2回)-(2018/06/30(Sat) 09:45:09)
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48512 / ResNo.1)  Re[1]: 剰余の定理について。
□投稿者/ muturajcp 一般人(1回)-(2018/08/12(Sun) 09:12:53)
    問題に
    整式P(x)は(x+1)^2で割ると割り切れて、
    と書いてあるから
    No.4
    P(x)=(x+1)^2{(x-2)Q(x)+a}+r(x)

    P(x)が(x+1)^2で割り切れるためには
    r(x)=0
    でなければならない
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48507 / 親記事)  積分計算
□投稿者/ こいち 一般人(11回)-(2018/07/29(Sun) 01:32:27)
    (x-1)^2/(x^2+1)^2について不定積分の解法を、解ける方お願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48508 / ResNo.1)  Re[1]: 積分計算
□投稿者/ らすかる 一般人(25回)-(2018/07/29(Sun) 02:08:19)
    (x-1)^2/(x^2+1)^2
    =(x^2-2x+1)/(x^2+1)^2
    =(x^2+1)/(x^2+1)^2-2x/(x^2+1)^2
    =1/(x^2+1)-2x/(x^2+1)^2
    と分ければ、1/(x^2+1)の不定積分はarctanx、
    2x/(x^2+1)^2の不定積分はx^2+1=tとおけば簡単ですね。

引用返信/返信 [メール受信/OFF]
■48509 / ResNo.2)  Re[2]: 積分計算
□投稿者/ こいち 一般人(12回)-(2018/07/29(Sun) 10:58:01)
    なるほど。発想が乏しかったです。
    やっぱりコツなどではなく経験なのでしょうか...(-_-;)

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48496 / 親記事)  広義積分の質問
□投稿者/ こいち 一般人(1回)-(2018/07/28(Sat) 12:04:12)
    ∫(積分区間0→∞){e^(-ax)}sin(bx)dx
    の解き方を教えてください。
引用返信/返信 [メール受信/OFF]

▽[全レス4件(ResNo.1-4 表示)]
■48500 / ResNo.1)  Re[1]: 広義積分の質問
□投稿者/ らすかる 一般人(22回)-(2018/07/28(Sat) 14:40:35)
    a≠0かつb≠0のとき
    ∫e^(-ax)・sin(bx)dx
    =e^(-ax)/(-a)・sin(bx)-∫e^(-ax)/(-a)・bcos(bx)dx
    =-{e^(-ax)・sin(bx)}/a+(b/a)∫e^(-ax)・cos(bx)dx
    =-{e^(-ax)・sin(bx)}/a+(b/a){e^(-ax)/(-a)・cos(bx)-∫e^(-ax)/(-a)・(-b)sin(bx)dx}
    =-{e^(-ax)・sin(bx)}/a+(b/a){-{e^(-ax)・cos(bx)}/a-(b/a)∫e^(-ax)sin(bx)dx}
    =-{e^(-ax)・sin(bx)}/a-b{e^(-ax)・cos(bx)}/a^2-(b^2/a^2)∫e^(-ax)sin(bx)dx
    なので
    (1+b^2/a^2)∫e^(-ax)・sin(bx)dx=-{e^(-ax)・sin(bx)}/a-b{e^(-ax)・cos(bx)}/a^2+C1
    (a^2+b^2)∫e^(-ax)・sin(bx)dx=-e^(-ax)・{asin(bx)+bcos(bx)}+C1
    ∴∫e^(-ax)・sin(bx)dx=-e^(-ax)・{asin(bx)+bcos(bx)}/(a^2+b^2)+C2
    従って
    b=0のとき
    (与式)=∫[0〜∞]0dx=0
    b≠0,a=0のとき
    (与式)=∫[0〜∞]sin(bx)dx=[-cos(bx)/b][0〜∞]は発散
    b≠0,a<0のとき
    (与式)=[-e^(-ax)・{asin(bx)+bcos(bx)}/(a^2+b^2)][0〜∞]は発散
    b≠0,a>0のとき
    (与式)=[-e^(-ax)・{asin(bx)+bcos(bx)}/(a^2+b^2)][0〜∞]=b/(a^2+b^2)

引用返信/返信 [メール受信/OFF]
■48501 / ResNo.2)  Re[2]: 広義積分の質問
□投稿者/ こいち 一般人(3回)-(2018/07/28(Sat) 15:11:29)
    b≠0,a>0のとき
    (与式)=[-e^(-ax)・{asin(bx)+bcos(bx)}/(a^2+b^2)][0〜∞]=b/(a^2+b^2)
    の部分がどうしてこうなるのか詳しく教えていただきたいです。すみません。
引用返信/返信 [メール受信/OFF]
■48503 / ResNo.3)  Re[3]: 広義積分の質問
□投稿者/ らすかる 一般人(23回)-(2018/07/28(Sat) 15:43:24)
    a>0,x→∞のとき e^(-ax)→0,|asin(bx)|≦a,|bcos(bx)|≦|b|なので
    lim[x→∞]-e^(-ax)・{asin(bx)+bcos(bx)}/(a^2+b^2)=0
    x=0のとき
    e^(-ax)=1, asin(bx)=0, bcos(bx)=bなので
    x=0のとき-e^(-ax)・{asin(bx)+bcos(bx)}/(a^2+b^2)=-b/(a^2+b^2)
    よって(与式)=0-(-b/(a^2+b^2))=b/(a^2+b^2)

引用返信/返信 [メール受信/OFF]
■48506 / ResNo.4)  Re[4]: 広義積分の質問
□投稿者/ こいち 一般人(9回)-(2018/07/28(Sat) 16:13:17)
    解くことができました。ありがとうございました!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-4]



■記事リスト / ▲上のスレッド
■48502 / 親記事)  積分範囲の極限
□投稿者/ こいち 一般人(5回)-(2018/07/28(Sat) 15:12:24)
    1)lim(n→∞)1/n{√(1/n)+√(2/n)+...+√(n/n)}
    (2)lim(n→∞){1/(n+1)+1/(n+2)+...+1/2n}
    (3)lim(n→∞){1/√(n^2+1^2)+1/√(n^2+2^2)+...+1/√(n^2+n^2)}
    この3問の極限値を求める問題です。積分の範囲に含まれているので何かしら積分を利用するのかと思いますが、解法が分かりません。分かる方お願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48504 / ResNo.1)  Re[1]: 積分範囲の極限
□投稿者/ らすかる 一般人(24回)-(2018/07/28(Sat) 15:43:41)
    他板で回答しました。
引用返信/返信 [メール受信/OFF]
■48505 / ResNo.2)  Re[2]: 積分範囲の極限
□投稿者/ こいち 一般人(8回)-(2018/07/28(Sat) 16:07:14)
    ありがとうございました!!!助かりました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター