数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
UpDate漸化式と不等式(2) | UpDate最大公約数(4) | Nomalsin(x)sin(x+1)<c(2) | Nomal三角形の面積の大小(4) | Nomal4次多項式(2) | Nomal偶数の約数(2) | Nomal青空学園数学科(0) | Nomal一次変数の微分可能性について(1) | Nomal積分(0) | Nomal有限小数(2) | Nomalイデアル(2) | Nomal確率(3) | Nomalフェルマーの最終定理の証明(69) | Nomal52545の「約数の個数」の式変形について(5) | Nomal約数の個数(6) | Nomal羅生門(1) | Nomal高校数学 確率の問題です。(2) | Nomal(x^x)^x = x^(x^2)(4) | Nomal数字が重複しない積(1) | Nomal自然数(2) | Nomal余り(2) | Nomalklog(1+1/k) < 1を証明する(2) | Nomal積分の極限(3) | Nomal平方数と素数(2) | Nomal約数(1) | Nomal整数問題(4) | Nomal期待値(2) | Nomal定積分(4) | Nomaln乗根(1) | Nomallim[θ→0](θ/sinθ)(2) | Nomal常微分方程式の基本的な質問(2) | Nomal単位円と正三角形(2) | Nomal証明 微積(0) | Nomal台形(1) | Nomal設問ミスですか?それとも解けますか?(1) | Nomal二次関数(1) | Nomalコラッツ予想(0) | Nomalζ関数(1) | Nomal(削除)(0) | Nomal高校数学 期待値の問題です(2) | Nomal二項係数(1) | Nomalフェルマーの最終定理の普通の証明(10) | Nomal高校数学レベルの定積分(2) | Nomal場合の数 (カタラン数に関係したもの)(2) | Nomal和文差分を利用した数列について(1) | Nomal面積体積表面積です。(2) | Nomal確率の基礎問題(1) | Nomal微積分(1) | Nomal整数の方程式(1) | Nomal確率の最大値(0) | Nomal至急お願いします(2) | Nomal不等式(3) | Nomal場合の数(2) | Nomal平方数(3) | Nomal形式的べき級数(0) | NomalG(0) | Nomal岩波講座基礎数学集合の補題6.1についての質問(1) | Nomal確率(2) | Nomal不等式(0) | Nomal素因数の個数について(2) | Nomal場合の数(1) | Nomal体(3) | Nomal部分分数分解(3) | Nomal線形代数の微分(1) | Nomal数珠順列(0) | Nomaleは無理数だけど(0) | Nomal素数(2) | Nomal(削除)(1) | Nomalフーリエ級数展開・フーリエ変換(2) | Nomal線形代数(1) | Nomal無限和(7) | Nomal進数の表現(4) | Nomal高校数学 整数問題(4) | Nomal整数の表現の同値証明(4) | Nomal多項式の既約性(0) | Nomal円錐台の断面積(9) | Nomal相関係数と共分散(1) | Nomallogの計算(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal複素数平面(1) | Nomal複素数 証明(難)(0) | Nomal確率の問題が分かりません 助けてください(1) | Nomal極限(3) | Nomalメビウス変換(0) | Nomal複素数 写像 (0) | Nomal複素数平面(0) | Nomal解答を教えてください(1) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal確率の不等式(1) | Nomal無理関数の積分(大学)(2) | Nomal複素数(1) | Nomal確率(2) | Nomal囲まれた面積(2) | Nomal複素数(2) | Nomal微分可能な点を求める問題(1) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal極限の問題 2改(1) |



■記事リスト / ▼下のスレッド
■52329 / 親記事)  同値関係が分かりません
□投稿者/ とと 一般人(1回)-(2023/09/23(Sat) 02:11:19)
    同値関係に関する問題が分かりません。

    1.2 点集合 A = {a, b} の考えうる同値関係をすべて挙げよ.
    2.4点集合 B = {a, b, c, d} の考えうる同値関係をすべて挙げよ.

    以上の二つの答えと考え方を解説していただきたいです。
    よろしくお願いします。

引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■52159 / 親記事)  素因数
□投稿者/ 柴咲コウネ 一般人(1回)-(2023/04/22(Sat) 10:49:16)
    nを自然数とし、1以上n以下の自然数kのうち
    kの最大の素因数が√kより大きい
    という性質を満たすものの個数をP(n)とします。
    lim[n→∞]P(n)/n の値とその求め方をご教示下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■52326 / ResNo.1)  Re[1]: 素因数
□投稿者/ WIZ 一般人(5回)-(2023/09/20(Wed) 16:04:05)
    ☆回答ではなく参考情報です。

    kの最大の素因数をqとすると、ある自然数rが存在してk = rqとなります。
    r < √k < qとなるので、1 ≦ r ≦ q-1です。
    但し、rq ≦ nとなることも必要なので、ガウスの記号を使えばr ≦ [n/q]となります。

    n以下の素数の個数は、素数計数関数π(n)個です。
    n以下の素数を昇順に並べてq[1], q[2], ・・・, q[π(n)]とすれば、
    P(n) = Σ[j=1, π(n)]min(q[j]-1, [n/q[j]])となると思います。
    # もし、上記の式が正しいと仮定しても、P(n)の具体的な値の計算には程遠いでしょうが。

    以下余談

    mを自然数として、F(m) = [cos(π((m-1)!+1)/m)^2]とおくと、
    # 上記のπは円周率を表す定数
    mが1または素数のときF(m) = 1, mが合成数のときF(m) = 0となります。

    π(n) = -1+Σ[m=1, n]F(m)となります。
    # 上記のπは素数計数関数を表す

    1 ≦ min(q[j]-1, [n/q[j]]) ≦ q[j]-1
    ⇒ π(n) ≦ Σ[j=1, π(n)]min(q[j]-1, [n/q[j]]) ≦ Σ[m=1, n]{(m-1)F(m)}
    ⇒ π(n)/n ≦ P(n)/n ≦ {Σ[m=1, n]{(m-1)F(m)}}/n

    n→∞のとき、π(n)/n→0は知られているようですが、
    {Σ[m=1, n]{(m-1)F(m)}}/nがどうなるのかは分かりませんでした。
    # 素数は平方数より密度が高いので、上記は発散する気がします。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■52323 / 親記事)  質問
□投稿者/ 韓国ドラマ 一般人(1回)-(2023/09/19(Tue) 12:13:35)
    以下のような相異なる正の実数a,b,cは存在しますか?
    「xy平面上に3点P(a,b),Q(b,c),R(c,a)をとると、PQ=b,QR=c,RP=aとなる。」

引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■52324 / ResNo.1)  Re[1]: 質問
□投稿者/ らすかる 一般人(14回)-(2023/09/19(Tue) 13:02:02)
    条件から
    (b-a)^2+(c-b)^2=b^2 … (1)
    (c-b)^2+(a-c)^2=c^2 … (2)
    (a-c)^2+(b-a)^2=a^2 … (3)
    (1)から
    a^2-2ab+(c-b)^2=0 … (4)
    (2)から
    a^2-2ca+(c-b)^2=0 … (5)
    (4)-(5)を整理して
    b=c
    ∴条件を満たす実数は存在しない。

引用返信/返信 [メール受信/OFF]
■52325 / ResNo.2)  Re[2]: 質問
□投稿者/ 韓国ドラマ 一般人(2回)-(2023/09/19(Tue) 13:15:13)
    ありがとうございます!
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■52317 / 親記事)  周期関数
□投稿者/ 恐竜 一般人(1回)-(2023/09/16(Sat) 22:46:38)
    実数から実数への周期関数f,g,hで
    f(x)+g(x)+h(x)= 0 (x≠0), 1 (x=0)
    をみたすものは存在しますか?
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■52322 / ResNo.1)  Re[1]: 周期関数
□投稿者/ らすかる 一般人(13回)-(2023/09/17(Sun) 22:27:21)
    直感的にはなさそうな気がしますが、
    もしあったとしても相当奇抜な関数でしょうね。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■52318 / 親記事)  不等式
□投稿者/ マッテヨ 一般人(1回)-(2023/09/17(Sun) 10:44:02)
    絶対値が1未満の複素数u,v,wについて
    (u+v+w)^2+3>(uv+vw+wu)^2+3(uvw)^2
    が成り立つことの証明を教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■52320 / ResNo.1)  Re[1]: 不等式
□投稿者/ らすかる 一般人(12回)-(2023/09/17(Sun) 11:06:52)
    例えばu=(1+i)/2, v=w=0のとき
    (左辺)=3+i/2
    (右辺)=0
    となりますが、左辺が虚数のため大小比較ができません。

引用返信/返信 [メール受信/OFF]
■52321 / ResNo.2)  Re[2]: 不等式
□投稿者/ マッテヨ 一般人(2回)-(2023/09/17(Sun) 11:39:16)
    すみません、
    |u+v+w|^2+3>|uv+vw+wu|^2+3|uvw|^2
    でした。よろしくお願いします。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター