数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalモスキーノコピー(0) | Nomal放物線の標準形(4) | Nomalα^52(2) | Nomal四角形の辺の長さ(2) | Nomal循環小数(2) | Nomal三角形の角(3) | Nomal約数関数とオイラー関数(0) | Nomalコラッツ予想について(2) | Nomal有理数と素数(1) | Nomalフィボナッチ数列について。(0) | Nomal導関数の定義について(2) | Nomal楕円曲線(1) | Nomal円と曲線(3) | Nomallog(1+x)<√x(4) | Nomal円と3次関数(4) | NomalΣと積分の交換(3) | Nomal合成数(2) | Nomalcos(1)とtan(1/2)(2) | Nomal積分について(2) | Nomal2次関数(1) | Nomal因数分解(4) | Nomal常用対数と桁数の関係(2) | Nomal(削除)(2) | Nomal行列を含む偏微分(0) | Nomalカタラン数(4) | Nomal無限級数(1) | Nomalスーパコピーvog.agvol.com/brand-70-c0.html ボーイロンドンブラドスパーピー(0) | Nomal大学数学 4次多項式 フェラーリの解法(0) | Nomalかんたんなフェルマーの最終定理の証明(19) | Nomal写像の問題です。(0) | Nomal離散数学 有向グラフの問題(0) | Nomal三角形と円の関係について(0) | Nomal|e^(icosθ)|、|e^(isinθ)|について(2) | Nomal大学数学 重積分(0) | Nomal原始関数問題(1) | Nomal簡単な論理式〜変な質問ですみませんが・・・(2) | Nomal割り算(1) | Nomal確率の問題です。大至急お願い致します(0) | Nomal完璧なのコピーbuytowe(0) | Nomal指数計算の練習(2) | Nomal微分積分(0) | Nomalテイラー展開(0) | Nomal合同式(1) | Nomalエルミート行列(0) | Nomal【大学数学】貨幣需要関数(0) | Nomal陰関数(0) | Nomal統計学(0) | Nomalベクトル空間(0) | Nomalフェルマーの最終定理の証明(6) | Nomal複素数の三角不等式(引き算)(2) | Nomal微分の問題(0) | Nomal体積(1) | Nomalフェルマーの最終定理の証明(z=x+rとおく方法)(1) | Nomal微分可能(2) | Nomalチェビシェフ 偏差値(0) | Nomal線形代数(1) | Nomal複素積分(2) | Nomal線形変換(1) | Nomalテイラー展開(2) | Nomal大学数学 線形代数 部分空間の証明(0) | Nomal証明問題(1) | Nomal一次結合と一次独立(0) | Nomal証明問題です(0) | Nomalz^5 = -1 を解く(2) | Nomal空間上の点(2) | Nomal熱力学の本に出てくる式変形がわかりません。(0) | Nomal複素関数の部分分数分解(4) | Nomalピタゴラス数の求め方(0) | Nomal二項定理を使ったピタゴラスの定理の証明(0) | Nomal二項定理を使ったフェルマーの最終定理の証明(0) | Nomal数学A 図形の計算(0) | Nomal2次方程式(3) | Nomalある式の微分における式変形について(2) | Nomal線形代数」(0) | Nomal統計学の問題(0) | Nomal3次元空間の点(2) | Nomal(削除)(3) | Nomal1/(z^2-1) を z = 1 でローラン展開する。(2) | Nomal無限等比級数について(2) | Nomalcosの不等式(2) | Nomal品質の服(0) | Nomal積分の解き方について(0) | Nomal期待値(2) | Nomal複素平面上の円(2) | Nomal3の個数(7) | Nomal複素数の関数(5) | Nomal分数関数の積分(2) | Nomalベクトルについて。(1) | Nomalベクトルについて。(0) | Nomal線形代数 証明(0) | Nomalベクトル解析(1) | Nomalフーリエ展開とフーリエ変換(0) | Nomalベクトル解析のスカラー場について(2) | Nomal第2可算公理(0) | Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal無限和(2) | Nomal大学一年 線形代数(1) |



■記事リスト / ▼下のスレッド
■48346 / 親記事)  自然数の謎
□投稿者/ ナイアガラ 一般人(1回)-(2017/09/01(Fri) 22:30:39)
    自然数m,n,m',n'が
    m+(m+n-1)(m+n-2)/2=m'+(m'+n'-1)(m'+n'-2)/2
    を満たしているならばm=m',n=n'である
    っていうのはどうして成り立つのでしょうか?
引用返信/返信 [メール受信/OFF]

▽[全レス4件(ResNo.1-4 表示)]
■48347 / ResNo.1)  Re[1]: 自然数の謎
□投稿者/ らすかる 一般人(5回)-(2017/09/02(Sat) 01:28:28)
    {1},{2,3},{4,5,6},{7,8,9,10},…
    という群数列を考えると
    第k群のm番目(ただし1≦m≦k)は
    先頭からm+k(k-1)/2番目となる。
    k=m+n-1とおけば、第m+n-1群のm番目が先頭からm+(m+n-1)(m+n-2)/2番目。
    先頭から何番目かが決まれば第何群の何番目かは決まるので
    m+(m+n-1)(m+n-2)/2の値が決まるとm+n-1とmが一つに定まり、
    従ってmとnが唯一に決まる。
    よってm+(m+n-1)(m+n-2)/2=m'+(m'+n'-1)(m'+n'-2)/2ならばm=m',n=n'。

引用返信/返信 [メール受信/OFF]
■48351 / ResNo.2)  Re[2]: 自然数の謎
□投稿者/ ナイアガラ 一般人(2回)-(2017/09/02(Sat) 20:38:57)
    有り難うございます

    この群数列は自然数の集合NとN×Nの全単射になるということですか?
引用返信/返信 [メール受信/OFF]
■48352 / ResNo.3)  Re[3]: 自然数の謎
□投稿者/ らすかる 一般人(7回)-(2017/09/03(Sun) 01:47:30)
    そういうことです。
引用返信/返信 [メール受信/OFF]
■48353 / ResNo.4)  Re[4]: 自然数の謎
□投稿者/ ナイアガラ 一般人(3回)-(2017/09/09(Sat) 15:56:14)
    有り難うございます。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-4]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48336 / 親記事)  数列
□投稿者/ ダノッゾ 一般人(1回)-(2017/08/28(Mon) 23:21:53)
    a[0]=1, a[1]=1/6,
    a[n+1]=(a[n]+a[n-1])/6

    b[0]=2/3, b[1]=2/9,
    b[n+1]=(b[n]+b[n-1])/6 + (2/3)*a[n+1]

    b[n]をa[0]〜a[n]で表してほしいです。
    よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス8件(ResNo.4-8 表示)]
■48340 / ResNo.4)  Re[4]: 数列
□投稿者/ ダノッゾ 一般人(3回)-(2017/08/30(Wed) 10:09:03)
    それは一般項を求めずに示すことはできるのでしょうか?
引用返信/返信 [メール受信/OFF]
■48341 / ResNo.5)  Re[5]: 数列
□投稿者/ らすかる 一般人(3回)-(2017/08/30(Wed) 11:06:43)
    一般項を求めずに示す方法は思い付きません。私がもし
    「上の条件のもとでb[n]=(2/3)Σ[k=0〜n]a[k]a[n-k]であることを示せ」
    という問題を解くとしたら、一般項を求めずに示す方法を考えるよりも
    一般項を求めてしまった方が早そうなので、一般項を求めてから示します。
    ただし、他に条件があったり誘導問題があったりすればこの限りではありません。
    元の問題があるのでしたら、部分的に書くのではなく
    そのまま書いて頂いた方がよいかと思います。

引用返信/返信 [メール受信/OFF]
■48342 / ResNo.6)  Re[6]: 数列
□投稿者/ ダノッゾ 一般人(4回)-(2017/08/30(Wed) 15:42:02)
    座標平面で、点Pを次の規則で移動させていく。
    ----規則----
    1個のさいころを振り、出る目の数をtとして、
    t≦2ならばx軸の正方向にtだけ移動させ、
    t≧3ならばy軸の正方向に1だけ移動させる。
    ------------
    原点を出発したPが点(n,0)に到達する確率a[n]と、
    点(n,1)に到達する確率b[n]を求めよ。

    という問題の解説で、最後の行に補足的に
    (なお、b[n]=(2/3)Σ[k=0〜n]a[k]a[n-k])
    とだけ書いてあるのでどうやって導き出されたのか知りたかったのです。

    漸化式を使った解説なので漸化式から簡単に分かるのだろうと思ったのですが・・・
引用返信/返信 [メール受信/OFF]
■48343 / ResNo.7)  Re[7]: 数列
□投稿者/ らすかる 一般人(4回)-(2017/08/30(Wed) 18:14:05)
    それは式の変形で出したものではないと思います。
    (以下、簡単のため「x軸の正方向」を「右」、「y軸の正方向」を「上」と書きます。)
    b[n]
    =「右に0移動して上に1移動して右にn移動する確率」
    +「右に1移動して上に1移動して右にn-1移動する確率」
    +「右に2移動して上に1移動して右にn-2移動する確率」
    +「右に3移動して上に1移動して右にn-3移動する確率」
    +・・・
    +「右にn移動して上に1移動して右に0移動する確率」
    =a[0]・(2/3)・a[n]
    +a[1]・(2/3)・a[n-1]
    +a[2]・(2/3)・a[n-2]
    +a[3]・(2/3)・a[n-3]
    +・・・
    +a[n]・(2/3)・a[0]
    =(2/3)Σ[k=0〜n]a[k]a[n-k]
    となりますね。

引用返信/返信 [メール受信/OFF]
■48344 / ResNo.8)  Re[8]: 数列
□投稿者/ ダノッゾ 一般人(5回)-(2017/08/30(Wed) 19:40:58)
    なんと、漸化式の変形ではなくて確率の話だったんですね。
    読解力が足りなかったみたいです。
    教えていただき有難うございました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-8]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48334 / 親記事)  整式について。
□投稿者/ コルム 一般人(2回)-(2017/08/15(Tue) 00:41:54)
    L(x)は、P(x)+Q(x)と共通因数G(x)をもつ。と、L(x)とP(x)+Q(x)は共通因数G(x)をもつ。の違いがわかりません。教えていただけると幸いです。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48333 / 親記事)  確率について。
□投稿者/ コルム 一般人(1回)-(2017/08/15(Tue) 00:39:38)
    1から1000まで書かれたカードが1枚ずつあります。
    その中から無作為に2枚同時に引き、大きい方の数をP、小さいほうの数をQ
    とするとき、
    log10(P/Q)<[log10(P/Q)]+log103
    となる確率を求めたいのですが、どこから手をつけてよいのか分かりません。
    教えていただけると幸いです。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48881 / ResNo.1)  Re[1]: 確率について。
□投稿者/ muturajcp 一般人(8回)-(2018/10/30(Tue) 21:21:41)
    1から1000まで書かれたカードが1枚ずつある
    その中から無作為に2枚同時に引き、大きい方の数をP、小さいほうの数をQ
    とするとき、
    全場合の数は
    1000C2=1000*999/2=500*999=499500

    1≦Q<P≦1000
    1/1000<1/Q≦1
    1<P/Q≦1000

    log10(P/Q)<[log10(P/Q)]+log_10(3)
    となる時

    1<P/Q<10の時
    [log10(P/Q)]=0
    log10(P/Q)<log_10(3)
    1<P/Q<3
    Q+1≦P≦3Q-1
    Q+1≦P≦1000
    1≦Q≦999

    1≦Q≦333の時,Q+1≦P≦3Q-1,の2Q-1通り
    334≦Q≦999の時,Q+1≦P≦1000,の1000-Q通り
    だから
    Σ_{Q=1〜333}(2Q-1)+Σ_{Q=334〜999}(1000-Q)
    通り

    10≦P/Q<100の時
    [log10(P/Q)]=1
    log10(P/Q)<1+log_10(3)=log_10(10)+log_10(3)=log_10(30)
    10≦P/Q<30
    10Q≦P<30Q
    10Q≦P≦30Q-1
    10Q≦P≦min(30Q-1,1000)
    10Q≦1000
    1≦Q≦100

    1≦Q≦33の時10Q≦P≦30Q-1の20Q通り
    34≦Q≦100の時10Q≦P≦1000の1001-10Q通り
    だから
    Σ_{Q=1〜33}20Q+Σ_{Q=34〜100}(1001-10Q)
    通り

    100≦P/Q<1000の時
    [log10(P/Q)]=2
    log10(P/Q)<2+log_10(3)=log_10(100)+log_10(3)=log_10(300)
    100≦P/Q<300
    100Q≦P<300Q
    100Q≦P≦min(300Q-1,1000)
    100Q≦P≦1000
    1≦Q≦10

    1≦Q≦3の時100Q≦P≦300Q-1の200Q通り
    4≦Q≦10の時100Q≦P≦1000の1001-100Q通り
    だから
    Σ_{Q=1〜3}200Q+Σ_{Q=4〜10}(1001-100Q)
    通り

    P/Q=1000の時
    [log10(P/Q)]=3
    log10(P/Q)<3+log_10(3)=log_10(1000)+log_10(3)=log_10(3000)
    P/Q=1000<3000
    Q=1,P=1000

    1
    通り

    Σ_{Q=1〜333}(2Q-1)+Σ_{Q=334〜999}(1000-Q)
    +Σ_{Q=1〜33}20Q+Σ_{Q=34〜100}(1001-10Q)
    +Σ_{Q=1〜3}200Q+Σ_{Q=4〜10}(1001-100Q)
    +1
    =
    2Σ_{Q=1〜333}Q-333+Σ_{n=1〜666}n
    +20Σ_{Q=1〜33}Q+Σ_{Q=34〜100}{10(101-Q)-9}
    +200Σ_{Q=1〜3}Q+Σ_{Q=4〜10}{100(11-Q)-99}
    +1
    =
    333*334-333+333*667
    +10*33*34-9(100-33)+10Σ_{Q=34〜100}(101-Q)
    +100*3*4-99(10-3)+100Σ_{Q=4〜10}(11-Q)
    +1
    =
    333*333+333*667
    +10*33*34-9*67+10Σ_{n=1〜67}n
    +100*3*4-99*7+100Σ_{n=1〜7}n
    +1
    =
    333(333+667)
    +10*33*34-9*67+10*67*68/2
    +100*3*4-99*7+100*7*8/2
    +1
    =
    333*1000
    +10*33*34-9*67+10*67*34
    +100*3*4-99*7+100*7*4
    +1
    =
    333000
    +340(33+67)-603
    +1200-693+2800
    +1
    =
    333000
    +34000-603
    +4000-693
    +1
    =
    371000-1296+1
    =
    369705
    通り

    log10(P/Q)<[log10(P/Q)]+log10(3)
    となる確率は

    369705/499500
    =
    24647/33300≒0.74
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■48256 / 親記事)  直線と三角形
□投稿者/ デヴォン青木 一般人(1回)-(2017/07/28(Fri) 12:30:39)
    座標平面上において点A(1,2)を通る直線Lがx軸とy軸の正の部分と交わるとし、
    その交点をB,Cとするとき、△ABCの周の長さが最小になるように直線Lを定めよ。

    よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48257 / ResNo.1)  Re[1]: 直線と三角形
□投稿者/ らすかる 一般人(3回)-(2017/07/28(Fri) 14:19:06)
    A,B,Cは直線L上にあるため「△ABC」は存在しません。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター