数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal写像の問題です。(0) | Nomal離散数学 有向グラフの問題(0) | Nomal三角形と円の関係について(0) | Nomal|e^(icosθ)|、|e^(isinθ)|について(2) | Nomal大学数学 重積分(0) | Nomal原始関数問題(1) | Nomal簡単な論理式〜変な質問ですみませんが・・・(2) | Nomal割り算(1) | Nomal確率の問題です。大至急お願い致します(0) | Nomal完璧なのコピーbuytowe(0) | Nomal指数計算の練習(2) | Nomal微分積分(0) | Nomalテイラー展開(0) | Nomal合同式(1) | Nomalエルミート行列(0) | Nomal【大学数学】貨幣需要関数(0) | Nomal陰関数(0) | Nomal統計学(0) | Nomalベクトル空間(0) | Nomalフェルマーの最終定理の証明(6) | Nomal複素数の三角不等式(引き算)(2) | Nomal微分の問題(0) | Nomal体積(1) | Nomalフェルマーの最終定理の証明(z=x+rとおく方法)(1) | Nomal微分可能(2) | Nomalチェビシェフ 偏差値(0) | Nomal線形代数(1) | Nomal複素積分(2) | Nomal線形変換(1) | Nomalテイラー展開(2) | Nomal大学数学 線形代数 部分空間の証明(0) | Nomal証明問題(1) | Nomal一次結合と一次独立(0) | Nomal証明問題です(0) | Nomalz^5 = -1 を解く(2) | Nomal空間上の点(2) | Nomal熱力学の本に出てくる式変形がわかりません。(0) | Nomal複素関数の部分分数分解(4) | Nomalピタゴラス数の求め方(0) | Nomal二項定理を使ったピタゴラスの定理の証明(0) | Nomal二項定理を使ったフェルマーの最終定理の証明(0) | Nomal数学A 図形の計算(0) | Nomal2次方程式(3) | Nomalある式の微分における式変形について(2) | Nomal線形代数」(0) | Nomal統計学の問題(0) | Nomal3次元空間の点(2) | Nomal(削除)(3) | Nomal1/(z^2-1) を z = 1 でローラン展開する。(2) | Nomal無限等比級数について(2) | Nomalcosの不等式(2) | Nomal品質の服(0) | Nomal積分の解き方について(0) | Nomal期待値(2) | Nomal複素平面上の円(2) | Nomal3の個数(7) | Nomal複素数の関数(5) | Nomal分数関数の積分(2) | Nomalベクトルについて。(1) | Nomalベクトルについて。(0) | Nomal線形代数 証明(0) | Nomalベクトル解析(1) | Nomalフーリエ展開とフーリエ変換(0) | Nomalベクトル解析のスカラー場について(2) | Nomal第2可算公理(0) | Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal無限和(2) | Nomal大学一年 線形代数(1) | Nomal大学で出された行列の課題がわかりません。(1) | Nomal 至急この問題を解説していただきたいです(0) | Nomal広義積分(0) | Nomal加速度の次元と速度の次元(1) | Nomal論理関数(0) | Nomal有理数(1) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal統計学 二項分布(0) | Nomal数列の一般項(2) | Nomal連立微分方程式(1) | Nomal全ての 整数解 等(4) | Nomal色々な方法 で(0) | Nomal初期値問題(1) | Nomal解析学(1) | Nomal統計学 確率密度関数 分布関数 確率(0) | Nomal対数尤度関数について!(0) | Nomal関数について(0) | Nomal解析学(2) | Nomal連立方程式(3) | Nomal論理を教えて下さい(12) | Nomal最小公倍数とはちがいますが。。(2) | Nomal消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学(2) | Nomal三次方程式(2) | Nomal線形代数(0) | Nomal極限(0) |



■記事リスト / ▼下のスレッド
■48792 / 親記事)  確率
□投稿者/ 感謝 一般人(1回)-(2018/09/06(Thu) 12:15:44)
    表が出やすいコインが何枚かある。
    これらを一斉に投げるとき
    表が出るコインが偶数枚ある確率と
    表が出るコインが奇数枚ある確率は
    どちらの方が大きいか?

    お願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス5件(ResNo.1-5 表示)]
■48793 / ResNo.1)  Re[1]: 確率
□投稿者/ らすかる 一般人(10回)-(2018/09/06(Thu) 15:54:16)
    全体が偶数枚なら偶数枚になる確率の方が高く、
    全体が奇数枚なら奇数枚になる確率の方が高い。
引用返信/返信 [メール受信/OFF]
■48797 / ResNo.2)  Re[1]: 確率
□投稿者/ 感謝 一般人(2回)-(2018/09/10(Mon) 11:40:05)
    有り難うございます。

    それは直感的に分かることなのでしょうか?
引用返信/返信 [メール受信/OFF]
■48798 / ResNo.3)  Re[2]: 確率
□投稿者/ らすかる 一般人(11回)-(2018/09/10(Mon) 14:17:04)
    全体が1枚のとき明らかに奇数枚になる確率が高いですね。
    表が出る確率をp(>1/2)、全体がn枚のときに
    表の枚数の偶奇がnと同じである確率をq(>1/2)とすると、
    それに1枚追加して全体をn+1枚にしたとき、
    追加した1枚が表になる確率はpなので
    表の枚数の偶奇がn+1と同じになる確率は
    pq+(1-p)(1-q)={(2p-1)(2q-1)+1}/2>1/2
    よって数学的帰納法により全体の枚数と表の枚数の偶奇が
    同じになる確率は1/2より大きくなります。

引用返信/返信 [メール受信/OFF]
■48799 / ResNo.4)  Re[1]: 確率
□投稿者/ WIZ 一般人(1回)-(2018/09/10(Mon) 19:53:49)
    横から失礼します。
    らすかるさんの解法を見て閃いたので、一応別解として書き込ませて頂きます。
    # かなり端折って書きます。

    組み合わせの数nCrをC(n, r)と記述します。
    コインの表が出る確率をpとすると1/2 < p ≦ 1です。
    表になるコインの枚数と全コインの枚数nの奇遇が一致する確率をa[n]とします。
    奇遇が一致しない確率をb[n]とします。
    # らすかるさんの記述のqが私の記述のa[n]と同義。

    n = 1のとき、a[1] = p, b[1] = 1-pはほぼ自明。

    n = 2のときは、コイン1とコイン2のの表裏は
    (コイン1, コイン2) = (表, 表)(表, 裏)(裏, 表)(裏, 裏)
    の4通りなので、
    a[2] = C(2, 2)(p^2)+C(2, 0)((1-p)^2)
    b[2] = C(2, 1)p(1-p)
    となります。

    一般のnでは、n = 2の場合から推論して、nが偶数のときs = 0, nが奇数のときs = 1として
    a[n] = C(n, n)(p^n)((1-p)^0)+C(n, n-2)(p^(n-2))((1-p)^2)+・・・+C(n, s)(p^s)((1-p)^(n-s))
    b[n] = C(n, n-1)(p^(n-1))((1-p)^1)+C(n, n-3)(p^(n-3))((1-p)^3)・・・+C(n, 1-s)(p^(1-s))((1-p)^(n-s+1))

    C(n, r) = C(n, n-r)という性質と、二項定理を使えば
    a[n]+b[n] = {p+(1-p)}^n = 1
    a[n]-b[n] = {p-(1-p)}^n = (2p-1)^n

    2p-1 > 0ですから、a[n]-b[n] > 0となり、a[n] > 1/2と言えます。
    ちなみに、
    a[n] = (1/2){1+(2p-1)^n} > 1/2
    b[n] = (1/2){1-(2p-1)^n}
    ですね。
引用返信/返信 [メール受信/OFF]
■48806 / ResNo.5)  Re[2]: 確率
□投稿者/ 感謝 一般人(3回)-(2018/09/12(Wed) 08:05:23)
http://感謝
    ふたつの視点から丁寧に説明していただき大変よく理解出来ました。
    有り難うございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-5]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48787 / 親記事)  直角二等辺三角形と円の共通部分
□投稿者/ 北欧 一般人(1回)-(2018/09/03(Mon) 07:47:57)
    教えて下さい。

    △OABは∠O=90度、OA=OB=2の直角二等辺三角形である。
    Oを通りABに垂直である直線上に中心がある半径1の円と
    △OABの共通部分の面積は最大でいくらになるか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48788 / ResNo.1)  Re[1]: 直角二等辺三角形と円の共通部分
□投稿者/ らすかる 一般人(9回)-(2018/09/03(Mon) 13:20:09)
    ABの中点をCとし、DはOC上にありOD=1である点とすると、
    面積が最大になる時の円の中心Pは線分CD上のどこかになります。
    (∵PがDからCDの延長方向、あるいはCからDCの延長方向に
      移動すると明らかに面積が小さくなる)
    CP=x(0≦x≦√2-1)のとき、円がABを切り取る線分の長さは2√(1-x^2)、
    OA及びOBを切り取る線分の長さは√{(4√2)x-2x^2}であり
    前者は減少関数、後者は増加関数だから
    AB側にはみ出た部分の面積の減り方と
    OA,OB側にはみ出た部分の面積の増え方が等しいときに
    共通部分の面積が最大になる。
    xが凅増えた時にAB側にはみ出た部分の面積は凅・2√(1-x^2)減り、
    OA,OB側にはみ出た部分の面積は合計で(√2)凅・√{(4√2)x-2x^2}増えるから、
    凅・2√(1-x^2)=(√2)凅・√{(4√2)x-2x^2}を解いて得られる
    x=√2/4のときに面積が最大となり、その面積は
    π-∫[√2/4〜1]2√(1-x^2)dx-2∫[3/4〜1]2√(1-x^2)dx
    =√7/2+arctan(√7/5)

引用返信/返信 [メール受信/OFF]
■48789 / ResNo.2)  Re[2]: 直角二等辺三角形と円の共通部分
□投稿者/ 北欧 一般人(2回)-(2018/09/04(Tue) 09:15:49)
    とても分かりやすく教えていただき有り難うございます。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48785 / 親記事)  確率
□投稿者/ 萩 一般人(1回)-(2018/09/02(Sun) 09:35:06)
    箱の中にk個の赤玉と4個の青玉がある。
    箱の中のk+4個の玉から無作為に1個を取り出し、
    それを新しい赤玉と交換して箱の中に戻す、
    という試行を繰り返す。
    n回目の試行で青玉を取り出す確率を求めよ。


    教えてほしいです。
    よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48786 / ResNo.1)  Re[1]: 確率
□投稿者/ らすかる 一般人(8回)-(2018/09/02(Sun) 17:01:51)
    2018/09/02(Sun) 19:10:30 編集(投稿者)

    4個の青玉を青1〜青4とします。
    n回目の試行で青1を取り出す確率は
    n-1回目までに青1を取り出さずn回目に青1を取り出す確率だから
    {(k+3)/(k+4)}^(n-1)・1/(k+4)=(k+3)^(n-1)/(k+4)^n
    青2〜青4も同じ計算でそれぞれ排反なので
    求める確率は4(k+3)^(n-1)/(k+4)^n

引用返信/返信 [メール受信/OFF]
■48790 / ResNo.2)  Re[2]: 確率
□投稿者/ 萩 一般人(2回)-(2018/09/04(Tue) 11:29:34)
    ありがとうございます。
    こんなに簡単に解けるとは!
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48781 / 親記事)  管理人さんへ
□投稿者/ らすかる 一般人(7回)-(2018/08/31(Fri) 23:04:01)
    この膨大な迷惑記事を防ぐのには、
    「http」を禁止文字列にするのが簡単でよいと思います。
    リンクは書き込めなくなりますので、
    書き込みたい場合はhを抜いてもらうなどが必要になりますが、
    迷惑記事はほぼなくなると思います。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48783 / ResNo.1)  Re[1]: 管理人さんへ
□投稿者/ 管理人 一般人(1回)-(2018/08/31(Fri) 23:45:19)
    らすかるさん
    アドバイスありがとうございます。
    とりあえず、httpを禁止文字列に登録しました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■48775 / 親記事)  放物線と接線
□投稿者/ イントロドン 一般人(1回)-(2018/08/31(Fri) 19:13:37)
    放物線 y=-(x+1)^2+5, x>0, y>0 の接線とx軸とy軸で
    囲まれる部分の面積の取りうる最小の値を求めよ。

    お願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48780 / ResNo.1)  Re[1]: 放物線と接線
□投稿者/ らすかる 一般人(6回)-(2018/08/31(Fri) 22:53:56)
    y'=-2(x+1)なので
    接点を(t,-(t+1)^2+5)(0<t<√5-1)とすると
    接線の方程式はy=-2(t+1)(x-t)-(t+1)^2+5=-2(t+1)x+t^2+4
    接線とx軸との交点は((t^2+4)/{2(t+1)},0)、y軸との交点は(0,t^2+4)
    よってこの接線とx軸で囲まれる部分の面積Sは
    (t^2+4)/{2(t+1)}・(t^2+4)・(1/2)
    =(t^2+4)^2/{4(t+1)}
    S'={16t(t+1)(t^2+4)-4(t^2+4)^2}/{16(t+1)^2}
    =4(t+2)(3t-2)(t^2+4)/{16(t+1)^2}
    従ってt=2/3のとき最小値((2/3)^2+4)^2/{4(2/3+1)}=80/27

引用返信/返信 [メール受信/OFF]
■48791 / ResNo.2)  Re[2]: 放物線と接線
□投稿者/ イントロドン 一般人(2回)-(2018/09/05(Wed) 09:01:32)
    ありがとうございました!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター