数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal円錐台の断面積(9) | Nomal相関係数と共分散(1) | Nomallogの計算(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal極限(3) | Nomal確率の問題が分かりません 助けてください(1) | Nomalメビウス変換(0) | Nomal複素数 写像 (0) | Nomal複素数平面(0) | Nomal複素数平面(1) | Nomal複素数 証明(難)(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(1) | Nomal複素数(1) | Nomal囲まれた面積(2) | Nomal極限の問題 2改(1) | Nomal微分可能な点を求める問題(1) | Nomal極限の問題2(1) | Nomal極限の問題(1) | Nomal複素数(2) | Nomal三角形(1) | Nomal確率(2) | Nomal三角数の和(0) | Nomalコラッツ予想(0) | Nomal低レベルな問題ですいません(2) | Nomal中学数学によるフェルマーの最終定理の証明(1) | Nomalガウス整数の平方和(8) | Nomal環でしょうか(2) | Nomal三角関数の式(0) | Nomal大学数学 位相数学(1) | Nomal確率(1) | Nomal1/{z^2(z-1)^2} z=0でローラン展開(1) | Nomal速度(2) | Nomali^iについて(2) | Nomal複素数平面(6) | Nomal(x+1)^n-x^n(1) | Nomal定積分(1) | Nomal円に内接する四角形(2) | Nomal多項式の整除(1) | Nomal代数学(1) | Nomal不等式(4) | Nomal大学数学(0) | Nomal極限(0) | Nomal有限体(0) | Nomal多項式(1) | Nomal場合の数(2) | Nomal同値関係が分かりません(0) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal質問(2) | Nomal不等式(2) | Nomal周期関数(1) | Nomal確立 基礎問題(2) | NomalCELINE コピー(0) | Nomalこれだけで求められるの?(3) | Nomal平方数(1) | Nomal係数(4) | Nomal不等式(2) | Nomal整数問題(1) | Nomal二次方程式の定数を求める(3) | Nomal正十二面体(2) | Nomal期待値(2) | Nomal複素数と図形(1) | Nomal大学の積分の問題です(0) | Nomal整数の例(4) | Nomal位相数学(0) | Nomalコラッツ予想について(0) | Nomalコラッツ予想について(0) | Nomal線形代数(0) | Nomalkkk(0) | Nomalお金がかからない(0) | Nomal大学数学難しすぎて分かりません。お願いします(0) | Nomal大学数学難しすぎて分かりません。。(0) | Nomal関数方程式(2) | Nomalコラッツ予想(0) | Nomalべズーの定理(0) | Nomal数学はゲーム(3) | Nomal解析学(0) | Nomal整数問題(1) | Nomal位相数学(1) | Nomal大学数学 位相数学(2) | Nomal数検準2級は難しい(0) | Nomal条件付き最大値問題について(0) | Nomal数列(2) | Nomal二項係数2nCn(1) | Nomal三角関数(0) | Nomalガウス記号(0) | Nomal確率(0) | Nomal式の値(2) | Nomal式の値(4) | Nomal外接円と内接円(1) | Nomal最小値(2) | Nomal最小値(2) | Nomal高校受験の問題です(4) | Nomal解析学(1) | Nomal確率分布(0) | Nomal整数問題(2) | Nomal関数の合成(0) | Nomal素数(2) |



■記事リスト / ▼下のスレッド
■50714 / 親記事)  √の問題
□投稿者/ 許して 一般人(1回)-(2021/04/19(Mon) 07:33:31)
    2021/04/19(Mon) 08:46:37 編集(投稿者)

    (1) a>0, b>0 のとき √a+2√b>√(a+4b) を示せ。
    (2) √14-√10>√15-√11 を示せ。

    という問題なのですが、(2)は(1)を使うとうまく解けたりするのでしょうか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50715 / ResNo.1)  Re[1]: √の問題
□投稿者/ らすかる 一般人(33回)-(2021/04/19(Mon) 14:17:40)
    (2)には(1)が使えない気がします。

    (1)
    √a+2√b=√{(√a+2√b)^2}
    =√{a+4b+4√(ab)}>√(a+4b)

    (2)
    (√14+√11)^2=25+2√154>25+2√150=(√15+√10)^2から
    √14+√11>√15+√10なので
    √14-√10>√15-√11

引用返信/返信 [メール受信/OFF]
■50717 / ResNo.2)  Re[2]: √の問題
□投稿者/ 許して 一般人(2回)-(2021/04/19(Mon) 21:33:32)
    ありがとうこざいます
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50707 / 親記事)  極形式
□投稿者/ 出川マリエ 一般人(1回)-(2021/04/17(Sat) 08:00:02)
    θ, φ, r, α は実数で、
    0≦θ≦π
    0≦φ≦π
    r>0
    r(cosα+isinα)=2cosθ+2isinθ+cos(θ-φ)+isin(θ-φ)
    を満たしている。
    cosθ を r と α であらわせ。

    教えて下さい。
    よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス6件(ResNo.2-6 表示)]
■50709 / ResNo.2)  Re[2]: 極形式
□投稿者/ 出川マリエ 一般人(2回)-(2021/04/17(Sat) 13:44:41)
    有難うございます。
    ±はどちらもありますか?
引用返信/返信 [メール受信/OFF]
■50710 / ResNo.3)  Re[3]: 極形式
□投稿者/ らすかる 一般人(31回)-(2021/04/17(Sat) 14:08:28)
    もしどちらかしかない場合は排除しなければなりませんので
    検討しましたが、どちらもありました。
    (ただし、値によっては一方が不適解の場合もあります)
    例えばα=π/4, r={√2+√6-2√(√3-1)}/2のときθ=π/6,π/3となりますが、
    図を描いてみればどちらも適解であることがわかります。
    r(cosα+isinα)が(1+√3-√(2√3-2))(1+i)/2≒0.761+0.761iで
    θ=π/6のとき2cosθ+2isinθ=√3+i≒1.732+i、
    θ=π/3のとき2cosθ+2isinθ=1+(√3)i≒1+1.732iとなり、
    いずれもr(cosα+isinα)≒0.761+0.761iまでの距離が1ですので
    条件を満たすφが存在します。

引用返信/返信 [メール受信/OFF]
■50711 / ResNo.4)  Re[4]: 極形式
□投稿者/ 出川マリエ 一般人(3回)-(2021/04/17(Sat) 15:49:36)
    θ=π/6 のとき
    0.761+0.761i=1.732+i+cos(π/6-φ)+isin(π/6-φ)
    すなわち
    −0.971−0.239i=cos(π/6-φ)+isin(π/6-φ)
    これをみたす0≦φ≦πは存在しますか?
引用返信/返信 [メール受信/OFF]
■50712 / ResNo.5)  Re[5]: 極形式
□投稿者/ らすかる 一般人(32回)-(2021/04/17(Sat) 17:19:20)
    ごめんなさい、勘違いしていました。
    条件は0≦φ≦πなのに勘違いして
    0≦θ-φ≦πで考えてしまっていました。
    0≦φ≦πならば解は一つしかないですね。
    θは大きい方だけ適解なのでcosθは小さい方が適解となり、
    cosθ={(r^2+3)cosα-|sinα|√{16r^2-(r^2+3)^2}}/(4r)
    が解になると思います。

引用返信/返信 [メール受信/OFF]
■50713 / ResNo.6)  Re[6]: 極形式
□投稿者/ 出川マリエ 一般人(4回)-(2021/04/17(Sat) 18:33:54)
    とんでもないです。
    とても参考になりました。
    有難うございました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-6]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50704 / 親記事)  tanと自然数
□投稿者/ こうさく 一般人(1回)-(2021/04/16(Fri) 01:25:26)
    自然数m,nは、
    tanα=1/m,tanβ=1/n
    を満たす角度α,βをとると
    tan(α+β)が整数になるという。
    m,nを求めよ。

    教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50705 / ResNo.1)  Re[1]: tanと自然数
□投稿者/ らすかる 一般人(29回)-(2021/04/16(Fri) 06:46:37)
    tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
    =(1/m+1/n)/{1-(1/m)(1/n)}
    =(m+n)/(mn-1)
    少なくとも(分母)≦(分子)でなければならないので
    mn-1≦m+n
    mn-m-n-1≦0
    mn-m-n+1≦2
    (m-1)(n-1)≦2
    m=1のときtan(α+β)=(n+1)/(n-1)=1+2/(n-1)となるのでn=2,3
    n=1のときも同様にm=2,3
    m>1かつn>1のとき、(m-1)(n-1)≦2を満たす自然数(m,n)の組は
    (2,2),(2,3),(3,2)だが、このうち(2,2)は(m+n)/(mn-1)が整数とならず不適。
    他はすべて条件を満たすので、求める答えは
    (m,n)=(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)

引用返信/返信 [メール受信/OFF]
■50706 / ResNo.2)  Re[2]: tanと自然数
□投稿者/ こうさく 一般人(2回)-(2021/04/16(Fri) 08:38:01)
    ありがとうございます!!
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50697 / 親記事)  放物線の標準形
□投稿者/ 星は昴 一般人(1回)-(2021/04/05(Mon) 13:31:03)
    4x^2-4xy+y^2-10x-20y=0

    をソフトで描かせたら放物線のようです。これをy軸に対称なように標準化した式にするにはどうしたらいいですか。
引用返信/返信 [メール受信/OFF]

▽[全レス4件(ResNo.1-4 表示)]
■50698 / ResNo.1)  Re[1]: 放物線の標準形
□投稿者/ らすかる 一般人(27回)-(2021/04/05(Mon) 17:29:03)
    軸がy=2xですから、
    x=(2X+Y)/√5
    y=(-X+2Y)/√5
    を代入して回転して整理すると
    Y=X^2/(2√5)
    となります。

引用返信/返信 [メール受信/OFF]
■50699 / ResNo.2)  Re[2]: 放物線の標準形
□投稿者/ 星は昴 一般人(3回)-(2021/04/05(Mon) 18:57:28)
     回答ありがとうございます。
      4x^2-4xy+y^2-10x-20y=0 ・・・・・(1)
    が、y=2xを軸とする放物線であることはどうやって見抜けばいいのでしょうか。

     教科書には離心率をeとするとき二次曲線の一般式
      (1-e^2)x^2+y^2-2p(1+e^2)x+p^2(1-e^2)=0 ・・・・・(2)
    というのがありますが、これでは(1)が放物線であるかどうか判断できないと思うのですが。

引用返信/返信 [メール受信/OFF]
■50700 / ResNo.3)  Re[3]: 放物線の標準形
□投稿者/ らすかる 一般人(28回)-(2021/04/05(Mon) 21:16:32)
    二次の項を因数分解すると(2x-y)^2となりますので、
    X=(2x-y)/√5, Y=(x+2y)/√5のようにおいて回転すると
    Xの項は2次、Yの項は1次となり、軸が2x-y=0に平行な
    放物線であることがわかります。
    下に書かれている「二次曲線の一般式」は、回転を含まない
    特定の場合の一般式なので、この問題では使えないと思います。
    また、回転してその「一般式」に合わせたいのであれば、軸がx軸に合うように
    x=(X-2Y)/√5, y=(2X+Y)/√5で逆方向に回転する必要があります。

引用返信/返信 [メール受信/OFF]
■50701 / ResNo.4)  Re[4]: 放物線の標準形
□投稿者/ 星は昴 一般人(4回)-(2021/04/05(Mon) 21:33:27)
    ありがとうございました。なかなか難しいのですね。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-4]



■記事リスト / ▲上のスレッド
■50693 / 親記事)  α^52
□投稿者/ 黒板アート 一般人(1回)-(2021/04/03(Sat) 13:50:51)
    α^3-2α^2+4α-4=0
    のとき
    α^52=p+qα
    をみたす整数p,qが存在することを示せ。(和訳)

    整数論の本を読んでいたら上記演習問題があったのですが、これは手計算で示せるものなのでしょうか?
    単に存在することを示すだけなので、次数を下げていく以外の方法があるのか!?などと思ってみたり…
    どうなんでしょう?教えていただけると幸いです。

引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50694 / ResNo.1)  Re[1]: α^52
□投稿者/ らすかる 一般人(26回)-(2021/04/03(Sat) 17:29:37)
    次数下げとあまり変わりませんが、工夫すると
    (α^3-2α^2+4α-4)(α+2)=α^4+4α-8=0 から α^4=-4α+8
    (α^4+4α-8)α^2-4(α^3-2α^2+4α-4)=α^6-16α+16=0 から α^6=16α-16=16(α-1)
    α^13=α(α^6)^2=256α(α-1)^2=256{(α^3-2α^2+4α-4)-(3α-4)}=256(-3α+4)
    (-3α+4)^4=81α^4-432α^3+864α^2-768α+256
    =81(-4α+8)-432(α^3-2α^2+4α-4)+960α-1472
    =636α-824
    なので
    α^52=(α^13)^4=256^4・(-3α+4)^4=2^32・(636α-824)=2^34・(159α-206)
    となりp=-103・2^35、q=159・2^34でα^52=p+qαが成り立つ。

引用返信/返信 [メール受信/OFF]
■50703 / ResNo.2)  Re[2]: α^52
□投稿者/ 黒板アート 一般人(2回)-(2021/04/08(Thu) 17:48:13)
    有難うございます。
    私にも・・・辛うじて計算できる方法です。
    α^4を見つけるのが肝要ですね。
    工夫の偉大さを感じました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター