数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal写像の問題です。(0) | Nomal離散数学 有向グラフの問題(0) | Nomal三角形と円の関係について(0) | Nomal|e^(icosθ)|、|e^(isinθ)|について(2) | Nomal大学数学 重積分(0) | Nomal原始関数問題(1) | Nomal簡単な論理式〜変な質問ですみませんが・・・(2) | Nomal割り算(1) | Nomal確率の問題です。大至急お願い致します(0) | Nomal完璧なのコピーbuytowe(0) | Nomal指数計算の練習(2) | Nomal微分積分(0) | Nomalテイラー展開(0) | Nomal合同式(1) | Nomalエルミート行列(0) | Nomal【大学数学】貨幣需要関数(0) | Nomal陰関数(0) | Nomal統計学(0) | Nomalベクトル空間(0) | Nomalフェルマーの最終定理の証明(6) | Nomal複素数の三角不等式(引き算)(2) | Nomal微分の問題(0) | Nomal体積(1) | Nomalフェルマーの最終定理の証明(z=x+rとおく方法)(1) | Nomal微分可能(2) | Nomalチェビシェフ 偏差値(0) | Nomal線形代数(1) | Nomal複素積分(2) | Nomal線形変換(1) | Nomalテイラー展開(2) | Nomal大学数学 線形代数 部分空間の証明(0) | Nomal証明問題(1) | Nomal一次結合と一次独立(0) | Nomal証明問題です(0) | Nomalz^5 = -1 を解く(2) | Nomal空間上の点(2) | Nomal熱力学の本に出てくる式変形がわかりません。(0) | Nomal複素関数の部分分数分解(4) | Nomalピタゴラス数の求め方(0) | Nomal二項定理を使ったピタゴラスの定理の証明(0) | Nomal二項定理を使ったフェルマーの最終定理の証明(0) | Nomal数学A 図形の計算(0) | Nomal2次方程式(3) | Nomalある式の微分における式変形について(2) | Nomal線形代数」(0) | Nomal統計学の問題(0) | Nomal3次元空間の点(2) | Nomal(削除)(3) | Nomal1/(z^2-1) を z = 1 でローラン展開する。(2) | Nomal無限等比級数について(2) | Nomalcosの不等式(2) | Nomal品質の服(0) | Nomal積分の解き方について(0) | Nomal期待値(2) | Nomal複素平面上の円(2) | Nomal3の個数(7) | Nomal複素数の関数(5) | Nomal分数関数の積分(2) | Nomalベクトルについて。(1) | Nomalベクトルについて。(0) | Nomal線形代数 証明(0) | Nomalベクトル解析(1) | Nomalフーリエ展開とフーリエ変換(0) | Nomalベクトル解析のスカラー場について(2) | Nomal第2可算公理(0) | Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal無限和(2) | Nomal大学一年 線形代数(1) | Nomal大学で出された行列の課題がわかりません。(1) | Nomal 至急この問題を解説していただきたいです(0) | Nomal広義積分(0) | Nomal加速度の次元と速度の次元(1) | Nomal論理関数(0) | Nomal有理数(1) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal統計学 二項分布(0) | Nomal数列の一般項(2) | Nomal連立微分方程式(1) | Nomal全ての 整数解 等(4) | Nomal色々な方法 で(0) | Nomal初期値問題(1) | Nomal解析学(1) | Nomal統計学 確率密度関数 分布関数 確率(0) | Nomal対数尤度関数について!(0) | Nomal関数について(0) | Nomal解析学(2) | Nomal連立方程式(3) | Nomal論理を教えて下さい(12) | Nomal最小公倍数とはちがいますが。。(2) | Nomal消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学(2) | Nomal三次方程式(2) | Nomal線形代数(0) | Nomal極限(0) |



■記事リスト / ▼下のスレッド
■50470 / 親記事)  cosの不等式
□投稿者/ 高校数学を忘れた人 一般人(1回)-(2020/08/23(Sun) 12:00:02)
    xが実数のとき
    |cos(x)|+|cos(2x)|+|cos(4x)|>1

    ってどうやって証明するのでしょうか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50471 / ResNo.1)  Re[1]: cosの不等式
□投稿者/ らすかる 一般人(8回)-(2020/08/23(Sun) 13:55:27)
    f(x)=|cosx|, g(x)=|cos2x|, h(x)=|cos4x|とする。
    f(x)の周期はπ、g(x)の周期はπ/2、h(x)の周期はπ/4であり、
    f(π-x)=f(x), g(π-x)=g(x), h(π-x)=h(x)だから、
    0≦x≦π/2についてf(x)+g(x)+h(x)>1を言えば十分。
    また、g(π/2-x)=g(x), h(π/2-x)=h(x)であり
    f(x)は0≦x≦π/2で狭義減少だから、
    π/4≦x≦π/2についてf(x)+g(x)+h(x)>1を言えば十分。
    この範囲の符号はf(x)≧0, g(x)≦0,
    π/4≦x<3π/8でh(x)<0, 3π/8≦x≦π/2でh(x)≧0だから
    f(x)+g(x)+h(x)は
    π/4≦x<3π/8のとき f(x)+g(x)+h(x)=cosx-cos2x-cos4x
    3π/8≦x≦π/2のとき f(x)+g(x)+h(x)=cosx-cos2x+cos4x
    cosx=tとおくとcos2x=2t^2-1, cos4x=8t^4-8t^2+1だから
    π/4≦x<3π/8のとき f(x)+g(x)+h(x)=-8t^4+6t^2+t
    3π/8≦x≦π/2のとき f(x)+g(x)+h(x)=8t^4-10t^2+t+2

    π/4≦x<3π/8の場合
    cosxはπ/4≦x<3π/8で減少関数であり
    cos(π/4)=√2/2<3/4, cos(3π/8)=√(2-√2)/2>3/8なので3/8<t<3/4
    このとき
    f(x)+g(x)+h(x)=-8t^4+6t^2+t
    =(3/4-t){8(t-3/8)^3+15(t-3/8)^2+(51/8)(t-3/8)}+(91/64)(t-3/8)+543/512>1

    3π/8≦x≦π/2の場合
    cosxは3π/8≦x≦π/2で減少関数であり
    cos(3π/8)=√(2-√2)/2<2/5, cos(π/2)=0なので0≦t<2/5
    このとき
    f(x)+g(x)+h(x)=8t^4-10t^2+t+2
    =8(2/5-t)^2(5t+4)t/5+(2/5-t)(770t+311)/125+628/625>1

    従ってf(x)+g(x)+h(x)>1は常に成り立つ。

    # もう少しうまい方法がありそうな気がしますが、思いつきませんでした。
引用返信/返信 [メール受信/OFF]
■50472 / ResNo.2)  Re[2]: cosの不等式
□投稿者/ 高校数学を忘れた人 一般人(2回)-(2020/08/23(Sun) 15:28:04)
    凄過ぎる解答をこんなにも早くありがとうございます。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50468 / 親記事)  品質の服
□投稿者/ www.iwgoods.com/buranndo-108-c0/ 一般人(1回)-(2020/08/19(Wed) 12:19:05)
    品質の服www.iwgoods.com/buranndo-108-c0/
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50466 / 親記事)  積分の解き方について
□投稿者/ さく 一般人(1回)-(2020/08/16(Sun) 16:02:17)
    u(x,0)= ∫ [0 ∞]{C(y)sin(yx)}dy=δ(x-π)
    ∫ [0 ∞]{δ(x-a)f(x)}dx = f(a)
    上式における
    C(y)の求め方を教えてください。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50463 / 親記事)  期待値
□投稿者/ バンダイ 一般人(1回)-(2020/08/16(Sun) 11:59:44)
    ガチャポンの中に
    マンガAのフィギュアが3種類1個ずつ
    アニメBのフィギュアが3種類1個ずつ
    ゲームCのフィギュアが3種類1個ずつ
    の合計9個の景品が入っている
    1回100円である
    太郎くんはA,B,C全てのオタクであるが
    お母さんにお小遣いをねだる立場なので
    A,B,Cのどれかひとつが3種類全て出た
    らやめようと考えた
    太郎くんがガチャに費やす金額の期待値は?

    教えて下さい
    よろしくお願いします
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50464 / ResNo.1)  Re[1]: 期待値
□投稿者/ らすかる 一般人(7回)-(2020/08/16(Sun) 13:48:19)
    1回で1種類
    2回以降、2種類目が出る確率は8/9なので
    2種類目が出るまでの回数の期待値は1+9/8
    同様に
    3種類目が出るまでの回数の期待値は1+9/8+9/7=191/56
    4種類目が出るまでの回数の期待値は1+9/8+9/7+9/6=275/56
    5種類目が出るまでの回数の期待値は1+9/8+9/7+9/6+9/5=1879/280
    6種類目が出るまでの回数の期待値は1+9/8+9/7+9/6+9/5+9/4=2509/280
    7種類目が出るまでの回数の期待値は1+9/8+9/7+9/6+9/5+9/4+9/3=3349/280
    全体で7種類出ればA,B,Cの少なくとも一つは3種類揃うのでこれ以上考える必要はない
    3種類目までで同じシリーズの3種類が揃う確率は
    (3C3×3C0×3C0×3)/9C3=3/9C3
    4種類目までで同じシリーズの3種類が揃う確率は
    (3C3×3C1×3C0×3!)/9C4=18/9C4
    5種類目までで同じシリーズの3種類が揃う確率は
    (3C3×3C2×3C0×3!+3C3×3C1×3C1×3)/9C5=45/9C5
    6種類目までで同じシリーズの3種類が揃う確率は
    (3C3×3C3×3C0×3+3C3×3C2×3C1×3!)/9C6=57/9C6
    7種類目までで同じシリーズの3種類が揃う確率は
    (3C3×3C3×3C1×3+3C3×3C2×3C2×3)/9C7=36/9C7=1
    なので
    ちょうど3種類目で同じシリーズの3種類が揃う確率は
    3/9C3=1/28
    ちょうど4種類目で同じシリーズの3種類が揃う確率は
    18/9C4-3/9C3=3/28
    ちょうど5種類目で同じシリーズの3種類が揃う確率は
    45/9C5-18/9C4=3/14
    ちょうど6種類目で同じシリーズの3種類が揃う確率は
    57/9C6-45/9C5=9/28
    ちょうど7種類目で同じシリーズの3種類が揃う確率は
    1-57/9C6=9/28
    従って一つのシリーズの3種類が揃うまでの回数の期待値は
    191/56×1/28+275/56×3/28+1879/280×3/14+2509/280×9/28+3349/280×9/28=2467/280
    なので、金額の期待値は
    2467/280×100=12335/14≒881円

引用返信/返信 [メール受信/OFF]
■50465 / ResNo.2)  Re[2]: 期待値
□投稿者/ バンダイ 一般人(2回)-(2020/08/16(Sun) 15:04:55)
    ご回答ありがとうございます
    これから詳しく読ませていただきますが
    答えだけ見ると意外と9回近くガチャ回さないと
    そろわないのですね
    ありがとうございました!
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▲上のスレッド
■50458 / 親記事)  複素平面上の円
□投稿者/ なたり 一般人(2回)-(2020/08/15(Sat) 11:48:57)

    から

    へ同値変形するのに大変てまどっています。
    教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50462 / ResNo.1)  Re[1]: 複素平面上の円
□投稿者/ X 一般人(7回)-(2020/08/16(Sun) 00:27:23)
    以下、例えばzの共役複素数を\zと書くことにします。

    |z-(2+i)|=3 (A)

    |z+b(c+i)|=a|z| (B)
    (a,b,cは実数、a>0)
    の形に同値変形できるとします。
    (B)より
    |z+b(c+i)|^2=(a|z|)^2
    {z+b(c+i)}・\{z+b(c+i)}=(a|z|)^2
    {z+b(c+i)}・{\z+b(c-i)}=(a|z|)^2
    |z|^2+b(c-i)z+b(c+i)\z+c^2+1=(a|z|)^2
    (1-a^2)|z|^2+b(c-i)z+b(c+i)\z+(c^2+1)b^2=0 (B)'
    一方(A)から同様にして
    |z|^2-(2-i)z-(2+i)\z-4=0 (A)'
    (A)'(B)が等価なので、係数について
    b(c-i)/(1-a^2)=-2+i (C)
    b(c+i)/(1-a^2)=-2-i (D)
    {(c^2+1)b^2}/(1-a^2)=-4 (E)
    (C)(D)において複素数の相等の定義により
    bc/(1-a^2)=-2 (F)
    b/(1-a^2)=-1 (G)
    (F)÷(G)より
    c=2
    これを(E)に代入して
    (b^2)/(1-a^2)=-4/5 (E)'
    (E)'÷(G)より
    b=4/5
    これを(G)に代入して
    a=3/√5

    以上から(A)は
    |z+(4/5)(2+i)|=(3/√5)|z|
    に同値変形できます。
引用返信/返信 [メール受信/OFF]
■50467 / ResNo.2)  Re[2]: 複素平面上の円
□投稿者/ なたり 一般人(3回)-(2020/08/17(Mon) 07:21:18)
    手際よい変形の仕方そのものを教えていただき有難うございました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター