数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal弘前大学 2010年度 理系 過去問です。(0) | Nomal無限和(2) | Nomal大学一年 線形代数(1) | Nomal大学で出された行列の課題がわかりません。(1) | Nomal 至急この問題を解説していただきたいです(0) | Nomal広義積分(0) | Nomal加速度の次元と速度の次元(0) | Nomal論理関数(0) | Nomal有理数(1) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal統計学 二項分布(0) | Nomal数列の一般項(2) | Nomal連立微分方程式(1) | Nomal全ての 整数解 等(0) | Nomal色々な方法 で(0) | Nomal初期値問題(1) | Nomal解析学(1) | Nomal統計学 確率密度関数 分布関数 確率(0) | Nomal対数尤度関数について!(0) | Nomal関数について(0) | Nomal解析学(2) | Nomal連立方程式(3) | Nomal論理を教えて下さい(12) | Nomal最小公倍数とはちがいますが。。(2) | Nomal消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学(2) | Nomal三次方程式(2) | Nomal線形代数(0) | Nomal極限(0) | Nomalボルスク・ウラムの定理の証明(0) | Nomal素数(0) | Nomalデルタ関数に関する問題(0) | Nomal正三角形と半円(2) | Nomal不等式(2) | Nomal漸化式(0) | Nomal統計学の質問(0) | Nomal行列のn乗(1) | Nomal確率変数(0) | Nomal確率における情報(17) | Nomal複数の点によって構成される多角形を相互の距離情報から類推する方法(6) | Nomal正射影再び(笑)(4) | Nomal正射影:正三角形→2等辺三角形(2) | Nomal球面上の2つの円の重なっている部分の面積(0) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal三角法(0) | Nomal大学数学です(0) | Nomal三角形(2) | Nomal数列の疑問(2) | Nomal素数積の評価〜ベルトラン・チェビシェフの定理(5) | Nomaleの極限(2) | Nomal積分(0) | Nomal四角形の極限(2) | Nomalcosの積分の評価(0) | Nomal動点の確率(2) | Nomalベルトラン・チェビシェフの定理について。(2) | Nomal極大と変曲(4) | Nomalsinの不等式(4) | Nomalピタゴラスの定理の簡単な証明(3) | UpDateフェルマーの最終定理の簡単な証明9(25) | Nomal複素積分の絶対値の評価(2) | Nomalリーマン積分可能性(3) | Nomalデデキントの切断による実数の構成(0) | Nomalベルトラン・チェビチェフの定理について。(0) | Nomalガウスの発散定理(0) | Nomal数列について。(0) | Nomal(1-x)^(-2)の展開式(2) | Nomal線形代数(0) | Nomal高校の範囲での証明(2) | Nomal京大特色(1) | Nomalこの表の見方を教えてください。(0) | Nomalヒルベルト空間(0) | Nomal$D_n$加群のフーリエ変換と関数のフーリエ変換との関係について(0) | Nomal群の問題(5) | Nomal合同式の計算(2) | Nomal統計/区画幅について(3) | Nomalプログラミング言語BASIC言語について。(14) | Nomal2変数関数の極値条件(2) | Nomal素数生成法について(0) | Nomal合同式の計算(4) | Nomal縦曲線について(0) | Nomal銃曲線における計画高ついて(0) | Nomal測量学について(0) | Nomal訂正です(1) | Nomal対数の取り方、シグモイド、ロジスティック関数(0) | Nomal緩和曲線の開始位置と終了地点および途中の高さxについて(0) | Nomalf'(x) の増減の判定方法(3) | Nomal三角形と内接円について改(1) | Nomal三角形と内接円について。(1) | Nomal増減表の作り方(6) | Nomal三葉曲線の長さについて(2) | Nomal4次関数(3) | Nomal約数を mod 13 で見る(1) | Nomal自作問題(3) | Nomalsupreme 偽物(0) |



■記事リスト / ▼下のスレッド
■47985 / 親記事)  数列とmod
□投稿者/ トランク大統領 一般人(1回)-(2017/05/22(Mon) 00:03:38)
    a[1]=-4
    a[2]=8
    a[3]=420
    a[n+3]=3a[n+2]-99a[n+1]-31a[n] (n≧1)
    で定められる数列{a[n]}をmod 93で見ると、いずれも0にならない(93の倍数にならない)、
    という性質があります。

    この93という整数はどうやって見つけたらよいのでしょうか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■47991 / ResNo.1)  Re[1]: 数列とmod
□投稿者/ らすかる 一般人(10回)-(2017/05/22(Mon) 19:52:37)
    別スレで書いた「条件を満たす自然数mは存在しない」の証明と同様に考えれば、
    31a[n]=-99a[n+1]+3a[n+2]-a[n+3]
    と変形したとき、mod mのmが31と互いに素であればある3項からその手前の項が
    一意的に決まり、a[0]=0なのでa[k]≡0(mod m)となる項が存在します。
    従ってa[k]≡0(mod m)となる項が存在しないためには、少なくとも
    mが31と互いに素でない、すなわち31の倍数である必要があります。
    よって31,62,93,…を考えればよいことになりますね。

引用返信/返信 [メール受信/OFF]
■47994 / ResNo.2)  Re[2]: 数列とmod
□投稿者/ トランク 一般人(9回)-(2017/05/22(Mon) 23:28:59)
    有り難うございます。

    これは問題集にあった問題なのですが、
    解けるように作ってあることがよく分かりました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47982 / 親記事)  数列とmod
□投稿者/ トランク 一般人(1回)-(2017/05/21(Sun) 20:40:36)
    a[1]=1
    a[2]=-3
    a[3]=6
    a[n+3]=-3a[n+2]-3a[n+1]+a[n] (n≧1)
    で定められる数列{a[n]}について、次の条件をみたす自然数mは存在するでしょうか?

    条件 どの自然数nに対してもa[n]はmの倍数ではない
引用返信/返信 [メール受信/OFF]

▽[全レス7件(ResNo.3-7 表示)]
■47986 / ResNo.3)  Re[1]: 数列とmod
□投稿者/ らすかる 一般人(8回)-(2017/05/22(Mon) 01:08:33)
    全然答えにはなっていないですが、
    とりあえずm≦1000000では条件を満たすmは存在しませんでした。

引用返信/返信 [メール受信/OFF]
■47987 / ResNo.4)  Re[2]: 数列とmod
□投稿者/ トランク 一般人(3回)-(2017/05/22(Mon) 01:29:34)
    No47986に返信(らすかるさんの記事)
    > 全然答えにはなっていないですが、
    > とりあえずm≦1000000では条件を満たすmは存在しませんでした。
    >

    ひええぇぇ・・・
    この方針では無理そうですね
引用返信/返信 [メール受信/OFF]
■47989 / ResNo.5)  Re[2]: 数列とmod
□投稿者/ トランク 一般人(5回)-(2017/05/22(Mon) 03:25:21)
    でも、もし任意の自然数mに対して、ある自然数nが存在して
    a[n]はmの倍数
    となるのなら、それ自体でちょっと面白い問題ですね
    元の問題からは離れてしまいますが…
引用返信/返信 [メール受信/OFF]
■47990 / ResNo.6)  Re[1]: 数列とmod
□投稿者/ らすかる 一般人(9回)-(2017/05/22(Mon) 19:03:10)
    「条件を満たす自然数mは存在しない」が証明できました。

    mod mで考えた場合、連続する3項の数の組合せは
    有限通り(m^3通り)ですから、必ず一定の周期でループします。
    そしてa[n+3]=-3a[n+2]-3a[n+1]+a[n]を変形すると
    a[n]=3a[n+1]+3a[n+2]+a[n+3]となり、ある連続する3項から
    必ずその前の項も一意的に決まりますので、
    「先頭のk項(k>0)はループせず、k+1項めからループが始まる」
    ということはあり得ず、先頭からループが始まります。
    従ってa[k]≡a[1],a[k+1]≡a[2],a[k+3]≡a[3](mod m)となるkが
    必ず存在します。
    このとき、a[0]=3a[1]+3a[2]+a[3]=0からa[k-1]≡a[0]≡0(mod m)ですから、
    mの倍数である項a[k-1]が存在します。
    従って条件を満たす自然数mは存在しません。

引用返信/返信 [メール受信/OFF]
■47992 / ResNo.7)  Re[2]: 数列とmod
□投稿者/ トランク 一般人(6回)-(2017/05/22(Mon) 23:22:44)
    2017/05/22(Mon) 23:38:47 編集(投稿者)

    なるほど!
    a[n]の係数1がいやらしい、mが存在しない(≒元の問題が難しくなってる)原因なんですね。

    他の線型回帰数列でも(フィボナッチ数列とか)同様のことが言えるんですね。
    有り難うございます。(って、元の問題がますます手が届かなくなってるのではありますが…)
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-7]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47977 / 親記事)  数と式
□投稿者/ たまごけ 一般人(1回)-(2017/05/19(Fri) 18:34:56)
    相異なる3つの実数a,b,cが
    (a^2-bc)/(a-abc)=(b^2-ca)/(b-abc)
    を満たしているならば、
    (c^2-ab)/(c-abc)
    も上の等式の値に等しいことを示せ。

    教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■47978 / ResNo.1)  Re[1]: 数と式
□投稿者/ らすかる 一般人(7回)-(2017/05/19(Fri) 21:00:33)
    (a^2-bc)/(a-abc)=(b^2-ca)/(b-abc)
    (a^2-bc)(b-abc)-(b^2-ca)(a-abc)=0
    a^2b-a^3bc-b^2c+ab^2c^2-ab^2+ab^3c+a^2c-a^2bc^2=0
    (b-a){abc(a+b+c)-ab-bc-ca}=0
    abc(a+b+c)-ab-bc-ca=0 (∵b-a≠0)
    (c-b){abc(a+b+c)-ab-bc-ca}=0
    b^2c-ab^3c-ac^2+a^2bc^2-bc^2+abc^3+ab^2-a^2b^2c=0
    (b^2-ca)(c-abc)-(c^2-ab)(b-abc)=0
    c-abc≠0の場合
    (b^2-ca)/(b-abc)=(c^2-ab)/(c-abc)
    となり成り立つ。
    c-abc=0の場合は
    (c^2-ab)/(c-abc)
    が定義されないので、「上の等式の値に等しい」とは言えない。
    従って、
    「(c^2-ab)/(c-abc)が定義されるならば、上の等式の値に等しい」
    と言うのが正しい。

    実際、a=2,b=1/2,c=1のとき
    (a^2-bc)/(a-abc)=(b^2-ca)/(b-abc) ですが、
    c^2-ab=c-abc=0 ですので (c^2-ab)/(c-abc) は定義されません。

引用返信/返信 [メール受信/OFF]
■47979 / ResNo.2)  Re[2]: 数と式
□投稿者/ たまごけ 一般人(2回)-(2017/05/19(Fri) 22:41:17)
    途中の計算が難しかったですが、詳しく有難うございました!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47970 / 親記事)  不等式
□投稿者/ ぽむぽむ 一般人(1回)-(2017/05/14(Sun) 20:56:33)
    0<x<π/2のとき1/sin(x)-1/x<1-2/πであることの証明をお願いします
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■47973 / ResNo.1)  Re[1]: 不等式
□投稿者/ WIZ 一般人(6回)-(2017/05/14(Sun) 23:50:07)
    f(x) = 1/sin(x)-1/x とおきます。

    f'(x) = -cos(x)/(sin(x)^2)+1/(x^2) = {(sin(x)^2)-(x^2)cos(x)}/{(x^2)(sin(x)^2)}
    0 < x < π/2の範囲で、f'(x)の分母は正ですから、分子の符号の変化を調べます。

    g(x) = sin(x)^2-(x^2)cos(x)とおきます。

    g'(x) = 2sin(x)cos(x)-2x*cos(x)+(x^2)sin(x) = 2cos(x)(sin(x)-x)+(x^2)sin(x)

    g''(x) = 2(cos(x)^2)-2(sin(x)^2)-2cos(x)+2x*sin(x)+2x*cos(x)+(x^2)cos(x)
    = 2(cos(x)+sin(x))(cos(x)-sin(x)+x)+(x^2)cos(x)

    0 < x < π/2で、0 < cos(x) かつ 0 < sin(x) < x なので、g''(x) > 0 です。
    よって、g'(x)は増加で、g'(0) = 0 なので、0 < x < π/2 で g'(x) > 0 といえます。
    よって、g(x)も増加で、g(0) = 0 なので、0 < x < π/2 で g(x) > 0 といえます。

    以上から、f'(x) > 0 であり、f(x)は増加で、
    0 < x < π/2の範囲のf(x)の値はf(π/2) = 1-2/π未満であるので、
    題意の不等式が成立するといえます。
引用返信/返信 [メール受信/OFF]
■47974 / ResNo.2)  Re[2]: 不等式
□投稿者/ ぽむぽむ 一般人(2回)-(2017/05/15(Mon) 22:04:04)
    有り難うございました!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▲上のスレッド
■47964 / 親記事)  どう並べ替えても一部を取り出しても素数
□投稿者/ shtainze 一般人(1回)-(2017/05/12(Fri) 17:07:52)
    n進法におけるk桁 (k: 4以上) の数で、下記の条件を満たす例を挙げよ。あるいは、必要条件を挙げよ。
    ・各桁の数をどう並べ替えても素数になる
    ・一部の桁のみを取り出した数も、どう並べ替えても素数になる

    マルチ投稿ですが、毎日確認して、何か回答を頂き次第こちらの掲示板にも反映させます。また、ご回答が得られない期間が1週間続いた時点でフォローを止めさせて頂きます。その際はこちらにメッセージを残します。どうぞ宜しくお願い致します。
引用返信/返信 [メール受信/OFF]

▽[全レス5件(ResNo.1-5 表示)]
■47965 / ResNo.1)  Re[1]: どう並べ替えても一部を取り出しても素数
□投稿者/ shtainze 一般人(2回)-(2017/05/12(Fri) 17:08:50)
    No47964に返信(shtainzeさんの記事)
    なお、以下は私が考えて分かった範囲です。
    kが2の時は、例えば、10進法における37が当てはまります。(37, 73, 3, 7が全て素数)
    kが3の時は例えば、246進法に最小の例があり、その時の各桁の数は31, 101, 191となります。(3桁、2桁、1桁の組み合わせの合計15通りの数が全て素数となる)
    素数定理が正しいとすれば、どんなに大きなkに対しても、n進法においてそのような例が出現する確率は少なく見積もってもO (1/(lognの累乗))となります。これは十分大きなnに対して必ずそのような例が出現し、かつ以降も無限に出現することを示唆しています。

    ただし、その確率の絶対値はかなり小さいので、kが4の時は数値計算による求解は不可能であり、何らかの定性的な絞込が必要となります。

    他には各桁が素数となる事(1桁の場合を考えれば自明)と、あと、modを使って多少の絞り込みができる事が判明している程度です。

    ・この問題のために群論も少しかじりましたが、群論は「桁を並べ替える」とか「一部の桁を取り出す」等の操作に関してはあまりパワーを発揮しないようです。(←誤解があればご指摘下さい)
    ・permutable primeについても少し調べましたが、今回はそれよりかなり強い条件を要請しているのであまり役立たない気がします。

引用返信/返信 [メール受信/OFF]
■47968 / ResNo.2)  Re[1]: どう並べ替えても一部を取り出しても素数
□投稿者/ WIZ 一般人(5回)-(2017/05/14(Sun) 18:07:01)
    2017/05/14(Sun) 22:48:25 編集(投稿者)

    # 回答でも関連情報でもなく、ただの感想文ですのでご了承ください。

    スレ主さんは何進法かということに拘っているようですが、
    何進法かということは自然数の位取り表記法の都合であり、その自然数の値とは無関係です。
    この質問の件は以下の様に、何進法かに無関係な問題に定式化でます。

    kを4以上の自然数としてk個の素数p[1], p[2], ・・・, p[k]と、1より大きい自然数nがある。
    但し、各素数の値はn未満とする。このときnのk-1次以下の整式で、
    係数はp[1], p[2], ・・・, p[k]のどれかとする時の値が常に素数となるように、
    p[1], p[2], ・・・, p[k]を選ぶことができるか?

    p[1], p[2], ・・・, p[k]の中に同一の素数は存在しません。
    何故なら、p[1] = p[2]とするとp[1]*n+p[2] = p[1](n+1)と合成数になってしまうからです。

    n進法という考えだと、1進法というのは存在しないのでn > 1となってしまいますが、
    私が定式化した記述ならn = 1の場合も考えてみても面白いかもしれませんね。
    p[a]*n+p[b]とp[b]*n+p[a]は、n > 1なら違う値でしょうが、n = 1なら同じ値になりますけどね。

    また、n進位取り記数法だから、p[1]〜p[k]はn未満の値である必要がありますが、
    このn未満という条件を取り去った問題を考えてみても面白いかもしれません。
引用返信/返信 [メール受信/OFF]
■47971 / ResNo.3)  Re[2]: どう並べ替えても一部を取り出しても素数
□投稿者/ shtainze 一般人(3回)-(2017/05/14(Sun) 21:39:33)
    No47968に返信(WIZさんの記事)
    > この質問の件は以下の様に、何進法かに無関係な問題に定式化でます。
    →いかにもその通りです。私が進法にこだわったのは、プログラミングによって候補を探していた時の名残です。
    p1 < p2 < p3 < p4 < nを守る事にすると、nを中心にしてアルゴリズムを組むのが最も理にかなう方法になるのです。 (n = 2kに対してnより小さいp1, p2, p3, p4を列挙して多項式が素数になるかサーチ、次に同じことをn = 2k+2に対して行い、同様にn = 2k+4, 2k+6,,, とだんだん増やしていく)

    > また、n進位取り記数法だから、p[1]〜p[k]はn未満の値である必要がありますが、
    > このn未満という条件を取り去った問題を考えてみても面白いかもしれません。
    おっしゃる通りp1, p2, p3,,, < nは一般化すれば外しても良いですね。外さなかったのは私がこの問題を思いついた由来によります。
    Wikipediaの様々な素数の記載を見ていた時に、
    ・circular prime (お尻のケタを頭にもってくる事を繰り返しても全て素数)
    ・truncatable prime (端っこからケタを切り落としていっても全て素数)
    ・permutable prime (どう並べ替えても素数)
    などなどの数遊びがあったのですが、「では最も一般化した形態はなんだろう?」と考えた所、この形態を思いついたというわけです。ということで位取り記数法にこだわっています。
    また、上記のプログラミングによるサーチとも関連しますが、この制限を外すと一気にプログラミングが困難になってきます (n, p1, p2, p3, p4のうち少なくとも2つが大小関係なく大きくなれるため、サーチの方向が決めにくい)。


    さて、見つかるもんでしょうかね・・・

    ># 回答でも関連情報でもなく、ただの感想文ですのでご了承ください。
    →正解があるとしても求めるのは非常に困難な事が予想されます。なにしろ、4ケタ: 24通り、3ケタ: 24通り、2ケタ: 12通り、4ケタ: 4通り、の合計64個の数が全て同時に素数にならないといけないので、それだけでも極めて低い確率であることは明らかですね。
    にも関わらず、素数定理 (nが素数である確率はザックリと1/Log (n) ) を用いてそのような確率を求めると、チリも積もれば山となり、10^90進法程度までサーチすれば必ず1つは存在する事が示唆されるということで、中々奥深いですね。

引用返信/返信 [メール受信/OFF]
■47972 / ResNo.4)  Re[2]: どう並べ替えても一部を取り出しても素数
□投稿者/ shtainze 一般人(4回)-(2017/05/14(Sun) 21:40:28)
    いずれにしても、返信を下さり本当にありがとうございます。私の趣味にお付き合いいただけてとても嬉しいです。
引用返信/返信 [メール受信/OFF]
■47981 / ResNo.5)  Re[3]: どう並べ替えても一部を取り出しても素数
□投稿者/ shtainze 一般人(5回)-(2017/05/21(Sun) 09:14:08)
    1週間経ちましたがご回答が得られないので終了とさせて頂きます。(難しいですよね・・・)
    またお世話になることがあるかもしれませんが宜しくお願い致します。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-5]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター