数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal指数計算の練習(2) | Nomal微分積分(0) | Nomalテイラー展開(0) | Nomal合同式(1) | Nomalエルミート行列(0) | Nomal【大学数学】貨幣需要関数(0) | Nomal陰関数(0) | Nomal統計学(0) | Nomalベクトル空間(0) | Nomalフェルマーの最終定理の証明(6) | Nomal複素数の三角不等式(引き算)(2) | Nomal微分の問題(0) | Nomal体積(1) | Nomalフェルマーの最終定理の証明(z=x+rとおく方法)(1) | Nomal微分可能(2) | Nomalチェビシェフ 偏差値(0) | Nomal線形代数(1) | Nomal複素積分(2) | Nomal線形変換(1) | Nomalテイラー展開(2) | Nomal大学数学 線形代数 部分空間の証明(0) | Nomal証明問題(1) | Nomal一次結合と一次独立(0) | Nomal証明問題です(0) | Nomalz^5 = -1 を解く(2) | Nomal空間上の点(2) | Nomal熱力学の本に出てくる式変形がわかりません。(0) | Nomal複素関数の部分分数分解(4) | Nomalピタゴラス数の求め方(0) | Nomal二項定理を使ったピタゴラスの定理の証明(0) | Nomal二項定理を使ったフェルマーの最終定理の証明(0) | Nomal数学A 図形の計算(0) | Nomal2次方程式(3) | Nomalある式の微分における式変形について(2) | Nomal線形代数」(0) | Nomal統計学の問題(0) | Nomal3次元空間の点(2) | Nomal自然対数 e について(3) | Nomal1/(z^2-1) を z = 1 でローラン展開する。(2) | Nomal無限等比級数について(2) | Nomalcosの不等式(2) | Nomal品質の服(0) | Nomal積分の解き方について(0) | Nomal期待値(2) | Nomal複素平面上の円(2) | Nomal3の個数(7) | Nomal複素数の関数(5) | Nomal分数関数の積分(2) | Nomalベクトルについて。(1) | Nomalベクトルについて。(0) | Nomal線形代数 証明(0) | Nomalベクトル解析(1) | Nomalフーリエ展開とフーリエ変換(0) | Nomalベクトル解析のスカラー場について(2) | Nomal第2可算公理(0) | Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal無限和(2) | Nomal大学一年 線形代数(1) | Nomal大学で出された行列の課題がわかりません。(1) | Nomal 至急この問題を解説していただきたいです(0) | Nomal広義積分(0) | Nomal加速度の次元と速度の次元(1) | Nomal論理関数(0) | Nomal有理数(1) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal統計学 二項分布(0) | Nomal数列の一般項(2) | Nomal連立微分方程式(1) | Nomal全ての 整数解 等(0) | Nomal色々な方法 で(0) | Nomal初期値問題(1) | Nomal解析学(1) | Nomal統計学 確率密度関数 分布関数 確率(0) | Nomal対数尤度関数について!(0) | Nomal関数について(0) | Nomal解析学(2) | Nomal連立方程式(3) | Nomal論理を教えて下さい(12) | Nomal最小公倍数とはちがいますが。。(2) | Nomal消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学(2) | Nomal三次方程式(2) | Nomal線形代数(0) | Nomal極限(0) | Nomalボルスク・ウラムの定理の証明(0) | Nomal素数(0) | Nomalデルタ関数に関する問題(0) | Nomal正三角形と半円(2) | Nomal不等式(2) | Nomal漸化式(0) | Nomal統計学の質問(0) | Nomal行列のn乗(1) | Nomal確率変数(0) | Nomal確率における情報(17) |



■記事リスト / ▼下のスレッド
■48009 / 親記事)  代数学の問題
□投稿者/ socksman 一般人(1回)-(2017/06/08(Thu) 14:56:50)
    以下の問題が分かりません。

    解説をお願いします。
1080×219 => 250×50

IMG_20170607_230206.jpg
/49KB
引用返信/返信 [メール受信/ON]

▽[全レス1件(ResNo.1-1 表示)]
■48514 / ResNo.1)  Re[1]: 代数学の問題
□投稿者/ muturajcp 一般人(5回)-(2018/08/17(Fri) 14:59:57)
    (1)
    Gを位数|G|=4の群
    x∈G
    [x]をxから生成される巡回群
    とする
    [x]はGの部分群だから
    部分群[x]の位数|[x]|は4の約数だから
    (|[x]|=1).or.(|[x]|=2).or.(|[x]|=4)
    |[x]|=4となる[x]がある時
    |[x]|=|G|=4だから[x]=Gとなり
    Gは1元xから生成される巡回群だから
    GはZ/4Zと同型である

    |[x]|=4となるxが無い時
    |[x]|=1の時xは単位元0だから
    x≠0となるすべてのxに対して
    |[x]|=2となる
    G={0,a,b,c}とすると
    |[a]|=|[b]|=|[c]|=2だから
    a+a=b+b=c+c=0
    aの逆元はaだからa+b≠0≠b+a,a+c≠0≠c+a
    b≠0だからa+b≠a≠b+a,b+c≠c≠c+b
    a≠0だからa+b≠b≠b+a,a+c≠c≠c+a
    ∴a+b=c=b+a
    c≠0だからa+c≠a≠c+a,b+c≠b≠c+b
    ∴a+c=b=c+a
    bの逆元はbだからb+c≠0=c+b
    ∴b+c=a=c+b
    0=(0,0)
    a=(1,0)
    b=(0,1)
    c=(1,1)
    とすれば
    a+a=b+b=c+c=0(mod2)
    a+b=b+a=c
    a+c=c+a=b(mod2)
    b+c=c+b=a(mod2)
    だから
    GはZ/2Z×Z/2Zと同型である

    (2)
    {1,(1,2,3,4),(1,3)(2,4),(1,4,3,2)}
    {1,(1,2,4,3),(1,4)(2,3),(1,3,4,2)}
    {1,(1,3,2,4),(1,2)(3,4),(1,4,2,3)}

    (3)
    {1,(1,2),(3,4),(1,2)(3,4)}
    {1,(1,3),(2,4),(1,3)(2,4)}
    {1,(1,4),(2,3),(1,4)(2,3)}
    {1,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48004 / 親記事)  準同型写像
□投稿者/ エントロピー 一般人(1回)-(2017/06/03(Sat) 21:59:22)
    以下の問題について質問があります。

    「群Z/12Zから群Z/14Zへの準同型写像fをすべて求めよ。」

    12と14の最大公約数が2なので、2個であるのは分かります。

    また、f(0)=f(1)=・・・f(13)=0となる0写像が答えの1個となるのも分かります。

    しかし、もう一つは求められません。

    f(1)、f(2)、f(3)、・・・、f(13)の値はどうなるのでしょうか?

    教えてください。
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■48005 / ResNo.1)  Re[1]: 準同型写像
□投稿者/ バラ肉 一般人(1回)-(2017/06/03(Sat) 22:37:17)
    12f(1)=0となることに気を付けてf(1)の値を決めればいいのでは?

引用返信/返信 [メール受信/OFF]
■48006 / ResNo.2)  Re[2]: 準同型写像
□投稿者/ エントロピー 一般人(2回)-(2017/06/04(Sun) 17:36:01)
    f(n)(nはZ/12Zの元)において、nが偶数ならば0で、奇数ならば7と出ましたが、これで正しいでしょうか?
引用返信/返信 [メール受信/OFF]
■48011 / ResNo.3)  Re[1]: 準同型写像
□投稿者/ ナオ 一般人(1回)-(2017/06/12(Mon) 09:01:15)
http://mybostonbag.exblog.jp/
    ご情報ありがとうございます。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48000 / 親記事)  互いに素
□投稿者/ on 一般人(1回)-(2017/06/01(Thu) 23:19:52)
    自然数mに対して、φ(m)を1以上m以下の自然数でmと互いに素なものの個数とするとき、
    2以上の自然数nに対して、2^n-1はφ(2^n-1)で割り切れないことの証明を教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48001 / ResNo.1)  Re[1]: 互いに素
□投稿者/ らすかる 一般人(11回)-(2017/06/02(Fri) 01:58:37)
    aが2^n-1と互いに素ならば(2^n-1)-aも2^n-1と互いに素
    aと(2^n-1)-aが一致することはないからφ(2^n-1)は偶数
    従って2^n-1はφ(2^n-1)では割り切れない。

引用返信/返信 [メール受信/OFF]
■48002 / ResNo.2)  Re[2]: 互いに素
□投稿者/ on 一般人(2回)-(2017/06/03(Sat) 09:48:43)
    有り難うございます!
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47996 / 親記事)  数列の最大項
□投稿者/ まるでお城 一般人(1回)-(2017/05/26(Fri) 16:38:08)
    aを正の数として、数列a[n]を
    a[n]=(a/n)^n (n=1,2,3,...)
    と定めます。
    a[1],a[2],a[3],...,a[n],...
    のうち最大の項はどれですか?
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■47997 / ResNo.1)  Re[1]: 数列の最大項
□投稿者/ WIZ 一般人(9回)-(2017/05/26(Fri) 20:09:22)
    logは自然対数関数を表すものとし、自然対数の底をeとします。

    xを実数として、f(x) = (a/x)^xとおいてx > 0でのf(x)の増減を調べます。
    f(x) > 0ですから、log(f(x)) = x(log(a)-log(x)),
    f'(x)/f(x) = log(a)-log(x)-1 = log(a/(ex)) ⇒ f'(x) = f(x)log(a/(ex))
    1 < a/(ex)つまりx < a/eで、f'(x) > 0なので、f(x)は増加。
    1 = a/(ex)つまりx = a/eで、f'(x) = 0なので、f(x)は極大。
    0 < a/(ex) < 1つまりa/e < xで、f'(x) < 0なので、f(x)は減少。

    よって、a/eに近い整数nでa[n]は最大になると考えられるので、
    n = [a/e]またはn = [a/e]+1のどちらかになると思います。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■47988 / 親記事)  2^(1/3)-1
□投稿者/ トランク 一般人(4回)-(2017/05/22(Mon) 02:22:41)
    自然数nに対して整数a[n],b[n],c[n]を
    (2^(1/3)-1)^n=a[n]+b[n]2^(1/3)+c[n]4^(1/3)
    として定めます。

    「n≧2ならばc[n]≠0」
    って正しいでしょうか?

    正しいとすると証明はどうすればよいのでしょうか?

    (他の場所で見かけて)なぜか少し気になりまして…。
    よろしくお願いします。
引用返信/返信 [メール受信/OFF]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター