数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
UpDate多項式の既約性(1) | Nomal円錐台の断面積(9) | Nomal相関係数と共分散(1) | Nomallogの計算(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal極限(3) | Nomal確率の問題が分かりません 助けてください(1) | Nomalメビウス変換(0) | Nomal複素数 写像 (0) | Nomal複素数平面(0) | Nomal複素数平面(1) | Nomal複素数 証明(難)(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(1) | Nomal複素数(1) | Nomal囲まれた面積(2) | Nomal極限の問題 2改(1) | Nomal微分可能な点を求める問題(1) | Nomal極限の問題2(1) | Nomal極限の問題(1) | Nomal複素数(2) | Nomal三角形(1) | Nomal確率(2) | Nomal三角数の和(0) | Nomalコラッツ予想(0) | Nomal低レベルな問題ですいません(2) | Nomal中学数学によるフェルマーの最終定理の証明(1) | Nomalガウス整数の平方和(8) | Nomal環でしょうか(2) | Nomal三角関数の式(0) | Nomal大学数学 位相数学(1) | Nomal確率(1) | Nomal1/{z^2(z-1)^2} z=0でローラン展開(1) | Nomal速度(2) | Nomali^iについて(2) | Nomal複素数平面(6) | Nomal(x+1)^n-x^n(1) | Nomal定積分(1) | Nomal円に内接する四角形(2) | Nomal多項式の整除(1) | Nomal代数学(1) | Nomal不等式(4) | Nomal大学数学(0) | Nomal極限(0) | Nomal有限体(0) | Nomal多項式(1) | Nomal場合の数(2) | Nomal同値関係が分かりません(0) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal質問(2) | Nomal不等式(2) | Nomal周期関数(1) | Nomal確立 基礎問題(2) | NomalCELINE コピー(0) | Nomalこれだけで求められるの?(3) | Nomal平方数(1) | Nomal係数(4) | Nomal不等式(2) | Nomal整数問題(1) | Nomal二次方程式の定数を求める(3) | Nomal正十二面体(2) | Nomal期待値(2) | Nomal複素数と図形(1) | Nomal大学の積分の問題です(0) | Nomal整数の例(4) | Nomal位相数学(0) | Nomalコラッツ予想について(0) | Nomalコラッツ予想について(0) | Nomal線形代数(0) | Nomalkkk(0) | Nomalお金がかからない(0) | Nomal大学数学難しすぎて分かりません。お願いします(0) | Nomal大学数学難しすぎて分かりません。。(0) | Nomal関数方程式(2) | Nomalコラッツ予想(0) | Nomalべズーの定理(0) | Nomal数学はゲーム(3) | Nomal解析学(0) | Nomal整数問題(1) | Nomal位相数学(1) | Nomal大学数学 位相数学(2) | Nomal数検準2級は難しい(0) | Nomal条件付き最大値問題について(0) | Nomal数列(2) | Nomal二項係数2nCn(1) | Nomal三角関数(0) | Nomalガウス記号(0) | Nomal確率(0) | Nomal式の値(2) | Nomal式の値(4) | Nomal外接円と内接円(1) | Nomal最小値(2) | Nomal最小値(2) | Nomal高校受験の問題です(4) | Nomal解析学(1) | Nomal確率分布(0) | Nomal整数問題(2) | Nomal関数の合成(0) |



■記事リスト / ▼下のスレッド
■50677 / 親記事)  有理数と素数
□投稿者/ ぽる塾 一般人(1回)-(2021/03/26(Fri) 10:45:09)
    正の有理数rでどのような素数p,qに対しても
    r≠(p+1)/(q+1)
    であるrの例をなにかひとつ教えてください。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■50678 / ResNo.1)  Re[1]: 有理数と素数
□投稿者/ らすかる 一般人(21回)-(2021/03/26(Fri) 14:17:12)
    なさそうな気がしますが、あるんですか?
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50674 / 親記事)  フィボナッチ数列について。
□投稿者/ メラゾーム 一般人(1回)-(2021/03/19(Fri) 03:07:39)
    フィボナッチ数列 F[1]=1, F[2]=1, F[n+2]=F[n+1]+F[n] (n≧1) について、
    F[n] (n≠5) が素数 ならば F[n] ≡ ±1 (mod n) であることを示してください。 よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■50884 / ResNo.1)  Re[1]: フィボナッチ数列について。
□投稿者/ WIZ 一般人(8回)-(2021/07/05(Mon) 19:33:43)
    Wikipediaの「フィボナッチ数」や「フィボナッチ素数」を見ると以下の記述があります。
    # 若干表現は変更しています。
    L(a/p) はルジャンドルの記号とします。

    (1) n = 4 の場合を除いて、F[n] がフィボナッチ素数となる n は素数である。
    しかし、n が素数でも F[n] が素数になるとは限らない。

    (2) p が 2 でも 5 でもない素数のとき、F[p-L(5/p)] は p で割り切れる。

    (3) F[n−1]F[n+1]−F[n]^2 = (-1)^n

    以下、F[3] = 2 と F[4] = 3 と F[5] = 5 以外のフィボナッチ素数について考察します。

    (1)により、自然数 p に対して F[p] が素数ならば p も素数です。
    L(5/p) = 1 または L(5/p) = -1 なので、(2)より、F[p-1] または F[p+1] が p で割り切れます。
    つまり、F[p-1]F[p+1] は p で割り切れます。よって(3)と p が奇数であることより、
    F[p−1]F[p+1]−F[p]^2 = (-1)^p = -1
    ⇒ F[p]^2 ≡ 1 (mod p)
    ⇒ F[p] ≡ ±1 (mod p)
    となり、題意は肯定的に示されます。
    (F[3] = 2 と F[4] = 3 は別途示す必要がありますが、これは目視でわかりますよね。)

    スレ主さん(もう見てないと思うけど)も上記程度は分かった上での質問なのかもしれません。
    つまり、(1)(2)(3)の証明が分からないということかもしれません。
    まあ、(3)は F[n] の一般項の式から容易に導けるのではないかと思います。(確認してないけど)
    (2)は2次体 Q(√5) の整数環の性質から導けるかも? (希望的観測)
    (1)は F[n] の一般項の式から導けるかもしれない。(願望)
引用返信/返信 [メール受信/OFF]
■50888 / ResNo.2)  Re[1]: フィボナッチ数列について。
□投稿者/ WIZ 一般人(9回)-(2021/07/06(Tue) 21:06:24)
    F[n-1]F[n+1]-F[n]^2 = (-1)^n の証明

    n を 2 以上の自然数として G[n] = F[n-1]F[n+1]−F[n]^2 とします。
    G[2] = F[1]F[3]−F[2]^2 = 1*2-1^2 = 1 = (-1)^2

    k を 2 以上の自然数として G[k] = (-1)^k と仮定します。
    G[k+1] = F[k]F[k+2]-F[k+1]^2
    = (F[k+1]-F[k-1])(F[k]+F[k+1])-F[k+1]^2
    = F[k+1]F[k]+F[k+1]^2-F[k-1]F[k]-F[k-1]F[k+1]-F[k+1]^2
    = (F[k+1]-F[k-1])F[k]-F[k-1]F[k+1]
    = F[k]^2-F[k-1]F[k+1]
    = -G[k]
    = (-1)^(k+1)

    以上から数学的帰納法により 2 以上の自然数 n に対して
    G[n] = F[n-1]F[n+1]-F[n]^2 = (-1)^n が成立する。
引用返信/返信 [メール受信/OFF]
■50889 / ResNo.3)  Re[1]: フィボナッチ数列について。
□投稿者/ WIZ 一般人(11回)-(2021/07/06(Tue) 23:29:21)
    (A) フィボナッチ数の加法定理 F[m+n] = F[m]F[n+1]+F[m-1]F[n] の証明

    m, n は自然数で、m ≧ 2 とする。

    m = 2 の場合、F[1] = F[2] = 1 なので、
    F[2+n] = F[n+1]+F[n] = F[2]F[n+1]+F[2-1]F[n] となり加法定理は成立する。

    m = 3 の場合、F[2] = 1, F[3] = 2 なので、
    F[3+n] = F[n+2]+F[n+1] = (F[n+1]+F[n])+F[n+1] = 2F[n+1]+F[n] = F[3]F[n+1]+F[3-1]F[n]
    となり加法定理は成立する。

    k を 3 以上の自然数として、m = k と m = k-1 で加法定理の成立を仮定すると、
    F[(k+1)+n] = F[k+n]+F[(k-1)+n]
    = (F[k]F[n+1]+F[k-1]F[n])+(F[k-1]F[n+1]+F[k-2]F[n])
    = (F[k]+F[k-1])F[n+1]+(F[k-1]+F[k-2])F[n]
    = F[k+1]F[n+1]+F[k]F[n]
    となり、m = k+1 でも成立する。

    以上から、数学的帰納法により 2 以上の自然数 m と 任意の自然数 n に対して、
    F[m+n] = F[m]F[n+1]+F[m-1]F[n] が成立する。


    (B) フィボナッチ数の整除定理 m | n ならば F[m] | F[n] の証明

    n を 2 以上の自然数とすると、加法定理より、
    F[n+n] = F[n]F[n+1]+F[n-1]F[n] = F[n](F[n+1]+F[n-1])
    つまり、F[n] | F[2n] が成立する。

    k を 2 以上の自然数、u を自然数として、F[kn] = u*F[n] を仮定すると、
    F[(k+1)n] = F[n]F[kn+1]+F[n-1]F[kn]
    = F[n]F[kn+1]+F[n-1]*u*F[n]
    = F[n](F[kn+1]+F[n-1]*u)
    となり、F[n] | F[(k+1)n] が成立する。

    以上から、数学的帰納法により v と n を 2 以上の自然数とするとき
    F[n] | F[vn] が成立する。
    # n = 1 や v = 1 でも上記は成立しますが。


    (C) F[p] が素数ならば、p は奇素数であるか 4 であることの証明

    3 以上の自然数 a と 2 以上の自然数 b が存在して p = ab ならば、
    a < p であり、1 < F[a] < F[p] かつ整除定理より F[a] | F[p] となり
    F[p] は素数ではありえない。

    従って、F[p] が素数となるためには p は真の約数を持たないか、
    真の約数の値が 2 以下の場合である。

    真の約数を持たないということは、p は素数であるということてある。
    但し、F[2] = 1 は素数ではないので、p は奇素数である。
    真の約数の値が 2 以下ということは p は 2 の冪であることが必要だが、
    2^3 = 8 は 4 という真の約数を持つため、可能性は p = 2^2 のみとなるが、
    F[4] = 3 は素数である。

    以上から、F[p] が素数ならば、p は奇素数か 4 であるといえる。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50671 / 親記事)  導関数の定義について
□投稿者/ 7610 一般人(5回)-(2021/03/18(Thu) 04:36:38)
      www.maroon.dti.ne.
    jp/koten-kairo/works/fft/converge9.html
    にから拝借した画像に

      lim[z→0]{f(x+z)-f(x)}/z = f'(z)|z=x ……(3)

    がf(z)の微分になるという説明があり、ちょっと混乱しています。
     フーリエ級数の収束定理そのものについての質問ではありません。
     (3) の z は x の変化ではなく、x はこの解説の流れでは定数扱いです。だから(3)の右辺にわざわざz=xを付記しているのは、実はf'(z)の一つである f'(x) のことなんだよということであれば、まあ納得がいくのですけど(笑)。

     通常導関数f(x)の定義は

      lim[h→0]{f(x+h)-f(x)}/h = f'(x) ……※

    で定義されます。この場合変数はもちろん x で、h はその変化Δx を表しているはずです。つまり任意の x の位置から h だけ離れたところから h→0 としています。この h はどんな値でもいいはずですから定数だと思います。
     ※について上の(3)のスタイルを踏襲すれば

      lim[x→0]{f(x+h)-f(x)}/x = f'(x)|x=h

    とでもなりそうです。これは変化量 h を固定しておき、変数 x を x→0 とするわけですから、どう考えても f'(h) で、それを f'(x)|x=h のように表現するのだ・・・と考えていいのでしょうか。

930×658 => 250×176

1616009798.png
/105KB
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50672 / ResNo.1)  Re[1]: 導関数の定義について
□投稿者/ らすかる 一般人(19回)-(2021/03/18(Thu) 05:57:01)
    「lim[z→0]{f(x+z)-f(x)}/z」の中のzと
    「= f'(z)|z=x」の中のzは別物です。
    ですから
    「lim[z→0]{f(x+z)-f(x)}/z = f'(z)|z=x」は
    「lim[h→0]{f(x+h)-f(x)}/h = f'(z)|z=x」や
    「lim[z→0]{f(x+z)-f(x)}/z = f'(t)|t=x」のように書くのと全く同じ意味です。
    (limで極限に行く変数はlimの中だけのローカル変数で、外部の変数とは関係ありません。)

    > lim[x→0]{f(x+h)-f(x)}/x = f'(x)|x=h
    この式はおかしいです。
    例えばh=1ならば(分子)→f(1)-f(0)、(分母)→0ですから
    f(0)=f(1)でない限り発散してしまい、微分になりません。

引用返信/返信 [メール受信/OFF]
■50673 / ResNo.2)  Re[2]: 導関数の定義について
□投稿者/ 7610 一般人(6回)-(2021/03/18(Thu) 08:02:38)
     詳細な回答ありがとうございました。深く感謝いたします。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50669 / 親記事)  楕円曲線
□投稿者/ あほ 一般人(1回)-(2021/03/17(Wed) 17:55:49)
    楕円曲線
    P=aG(Gは楕円曲線上のベーシスポイント)としたときのaの数値の求め方
     aは整数で0<a<nただしn=min[k|kG=O,k>0)&#12315;となる
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50670 / ResNo.1)  Re[1]: 楕円曲線
□投稿者/ あほ 一般人(2回)-(2021/03/17(Wed) 17:56:38)
    No50669に返信(あほさんの記事)
    > 楕円曲線
    > P=aG(Gは楕円曲線上のベーシスポイント)としたときのaの数値の求め方
    >  aは整数で0<a<nただしn=min[k|kG=O,k>0)となる
引用返信/返信 [メール受信/OFF]
■51873 / ResNo.2)  Re[2]: 楕円曲線
□投稿者/ マシュマロ 一般人(10回)-(2022/06/11(Sat) 01:12:59)
http://www.youtube.com/channel/UCHRwEUVvKzCUqRDRYpKam6A
    ずいぶん前の問題なので、おそらくもう見ておられないかもしれませんが、一応返信します。

    楕円曲線暗号の秘密鍵を求めることに相当する問題なので、効率のいい方法はなさそうです。

    楕円曲線Eを双有理変換によってWeierstrass標準形による楕円曲線E´に移したとき、G,PがそれぞれG´,P´に移ったとします。

    G´におけるE´の接線とE´の(他の)交点のx軸に関する対称点が2G´です。

    次に、G´と2G´を結ぶ直線とE´の(他の)交点の対称点が3G´です。

    以下、これを続けていき、P´に一致したときの係数が求めるaとなります。

    要するに、効率的でうまい方法はなさそうですね。。。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▲上のスレッド
■50667 / 親記事)  円と曲線
□投稿者/ 油 一般人(1回)-(2021/03/14(Sun) 19:41:58)
    以下の条件が満たされるような実数 r >1 の範囲はどうなるのでしょうか?

    条件
    ある実数 a >0 が存在して、x-y平面上における
    曲線 : y=a*x^r -1 (x >0) と閉円板 : x^2+y^2≦1 の
    共通部分の長さが 2 より大きくなる。
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■50668 / ResNo.1)  Re[1]: 円と曲線
□投稿者/ らすかる 一般人(18回)-(2021/03/16(Tue) 00:59:37)
    直感的には、「r>1」が答えのように思います。
    (つまりr>1を満たす任意のrに対して条件を満たすaが存在する)
    aが非常に大きいとき、曲線は(0,1)のすぐ近くと(0,-1)を結ぶ曲線に
    なりますね。このとき、
    「(0,1)でないことによる減少分」よりも「直線でないことによる増加分」
    の方が大きく、2を超えるように思います。
    直感ですからあてになりませんが。
引用返信/返信 [メール受信/OFF]
■50675 / ResNo.2)  Re[2]: 円と曲線
□投稿者/ 油分 一般人(1回)-(2021/03/22(Mon) 08:12:17)
    有り難うございます。

    ひとつだけ確認させて下さい。このツイートを見ると
    ttp://twitter.com/icqk3/status/1368856811143630849
    r=3/2 は 2 を超えないような感じのことが書いてあるのですが
    誤りでしょうか?
引用返信/返信 [メール受信/OFF]
■50676 / ResNo.3)  Re[3]: 円と曲線
□投稿者/ らすかる 一般人(20回)-(2021/03/22(Mon) 08:40:20)
    簡単に計算してみたところ、確かに超えないみたいですね。
    やはり私の直感はあてになりませんでした。
    私が上で書いたことは正しくありませんので無視して下さい。
    1.5以下では超えないようですね。1.6でも超えないかも。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター