数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalリーマン積分可能性(3) | Nomalデデキントの切断による実数の構成(0) | Nomalベルトラン・チェビチェフの定理について。(0) | Nomalガウスの発散定理(0) | Nomal数列について。(0) | Nomal(1-x)^(-2)の展開式(2) | Nomal線形代数(0) | Nomal高校の範囲での証明(2) | Nomal京大特色(1) | Nomalこの表の見方を教えてください。(0) | Nomalヒルベルト空間(0) | Nomal$D_n$加群のフーリエ変換と関数のフーリエ変換との関係について(0) | Nomal群の問題(5) | Nomal合同式の計算(2) | Nomal統計/区画幅について(3) | Nomalプログラミング言語BASIC言語について。(14) | Nomal2変数関数の極値条件(2) | Nomal素数生成法について(0) | Nomal合同式の計算(4) | Nomal縦曲線について(0) | Nomal銃曲線における計画高ついて(0) | Nomal測量学について(0) | Nomal訂正です(1) | Nomal対数の取り方、シグモイド、ロジスティック関数(0) | Nomal緩和曲線の開始位置と終了地点および途中の高さxについて(0) | Nomalf'(x) の増減の判定方法(3) | Nomal三角形と内接円について改(1) | Nomal三角形と内接円について。(1) | Nomal増減表の作り方(6) | Nomal三葉曲線の長さについて(2) | Nomal4次関数(3) | Nomal約数を mod 13 で見る(1) | Nomal自作問題(3) | Nomalsupreme 偽物(0) | Nomal(削除)(0) | Nomalケプラー方程式による惑星の会合計算(0) | Nomal追いかけ算 惑星会合時期(1) | Nomal担当者の時間割(2) | Nomal(削除)(0) | Nomalフェルマーの最終定理の簡単な証明9(23) | Nomal必要十分条件の証明(3) | Nomal合コン(4) | Nomal三次関数と長方形(4) | Nomal同型写像(0) | Nomal屑スレを下げるための問題(2) | Nomal基本的な確率(2) | Nomal中学生でも解けそうな入試問題001(1) | Nomal正2n角形と確率(4) | Nomal階段行列の作り方(4) | Nomalご教示ください(5) | Nomal統計学の問題です(0) | Nomal3の倍数(4) | Nomalラプラス方程式 境界条件(0) | Nomal対偶について(8) | Nomalsinの関係(2) | Nomal偶数と奇数(8) | Nomal2^(1/3)とωと√3(4) | Nomal supreme コート(0) | Nomalフェルマーの最終定理の簡単な証明8(74) | Nomal目的の形への行列の三角化(2) | Nomal掲示板について。(1) | Nomalフェルマーの定理 RSA暗号(1) | Nomal等角写像の問題です。(2) | Nomalフェルマーの最終定理の簡単な証明7(101) | Nomalグッチンコピー(0) | Nomal6次方程式(2) | Nomalベクトル解析 証明(0) | Nomal位相数学、位相空間(0) | Nomal実生活に活きる確率(0) | Nomalオイラーの公式 導関数の定義(2) | Nomal2階常微分方程式 (1) | Nomalオイラーの公式(3) | Nomalオイラーの公式(0) | Nomalオイラーの公式(3) | Nomalフェルマーの最終定理の簡単な証明6(101) | Nomal数学について。(1) | Nomal線形代数(1) | Nomal整数問題(1) | Nomalフェルマーの最終定理の簡単な証明5(101) | Nomal順列(4) | Nomal大小の比較(7) | Nomalシミュレーションについて(1) | Nomalフェルマーの最終定理の簡単な証明4(101) | Nomal数学について。(1) | Nomalフーリエ変換の求め方(1) | Nomalisometric matrix,p-ノルムについて(0) | Nomald(cos^2θ)/dθ=と置けるような相似の図を見つけたいです!(0) | Nomal1/ cos^2θの微分を画像の図を用いて解きたい!(0) | Nomalラグランジュの剰余項(1) | Nomallog2とマクローリン展開についての証明(1) | Nomal極限を求める(大学数学)(1) | Nomal期待値(2) | Nomal確率密度(2) | Nomal三角方程式(2) | Nomal方程式(2) | Nomal多項式の係数(1) | Nomalフェルマーの最終定理の簡単な証明3(76) | Nomal複素平面上の領域について(0) | Nomal数学検定について。(0) | Nomal複素解析(2) | Nomal定積分と体積(1) |



■記事リスト / ▼下のスレッド
■48868 / 親記事)  どうしても行列式の計算がミスが誰か助けて!!
□投稿者/ Laura 一般人(1回)-(2018/10/26(Fri) 11:48:58)
    よろしくお願いします。

    A:=

    19/6, -11/6, (1/3)*I
    -11/6, 19/6, (1/3)*I
    -(1/3)*I,-(1/3)*I, 5/3

    B:=

    19/6, -1/12-(1/12)*I, -1/4-(1/4)*I
    -1/12+(1/12)*I, 37/12, 1/4
    -1/4+(1/4)*I, 1/4, 15/4

    という正値エルミート行列

    それぞれの固有値は
    {1,2,5}

    {3,3,4}

    の各行を入れ替えてできる行列Q(これもエルミート行列になるはず)の13成分と31成分だけがなぜか
    13/108+19/216*I

    83/216+19/108*I
    となり一致しません。

    必死にどこに入力ミスがあるのか探したのですがどうしても見つけれません。

    どなたかどこに計算ミスがあるのか教えてください。

    maple11のファイルを添付しました。

example_mixed_matrix1.zip
/14KB
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48867 / 親記事)  箱ひげ図について。
□投稿者/ コルム 一般人(2回)-(2018/10/22(Mon) 19:15:13)
    箱ひげ図を縦に書いてしまったのですが、元々横なのです。
    指定はありません。
    教えていただけると幸いです。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48865 / 親記事)  楕円面と直線の交点
□投稿者/ ライカー 一般人(3回)-(2018/10/20(Sat) 12:01:52)
    楕円面の方程式が与えられていて、点P(x1,y1,z1)が、この点を通り方向余弦がλ、μ、νの弦の中点であるための条件は、直線の方程式のパラメータtについての二次方程式の2つの解をt1,t2とするとき、t1+t2=0となるということですが、なぜt1+t2=0となるのか理解できません。

    ご教授をよろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48872 / ResNo.1)  Re[1]: 楕円面と直線の交点
□投稿者/ muturajcp 一般人(2回)-(2018/10/26(Fri) 16:27:21)
    (x1,y1,z1)を通り方向余弦が(λ,μ,ν)の直線の方程式は
    (x(t),y(t),z(t))=(x1,y1,z1)+t(λ,μ,ν)
    となる
    弦の端点は直線と楕円との交点だから
    この点座標のtを求める2次方程式の2つの解を
    t1,t2とすると
    弦の始点座標は
    (x(t1),y(t1),z(t1))=(x1,y1,z1)+t1(λ,μ,ν)
    弦の終点座標は
    (x(t2),y(t2),z(t2))=(x1,y1,z1)+t2(λ,μ,ν)
    だから
    弦の中点座標は
    ({x(t1)+x(t2)}/2,{y(t1)+y(t2)}/2,{z(t1)+z(t2)}/2)
    =(x1,y1,z1)+{(t1+t2)/2}(λ,μ,ν)
    ↓(x1,y1,z1)は弦の中点だから
    =(x1,y1,z1)

    (x1,y1,z1)+{(t1+t2)/2}(λ,μ,ν)=(x1,y1,z1)
    ↓両辺から(x1,y1,z1)を引くと
    {(t1+t2)/2}(λ,μ,ν)=(0,0,0)
    ↓両辺に2をかけると
    (t1+t2)(λ,μ,ν)=(0,0,0)
    (t1+t2)λ=(t1+t2)μ=(t1+t2)ν=0
    (t1+t2)λ^2=(t1+t2)μ^2=(t1+t2)ν^2=0
    (t1+t2)(λ^2+μ^2+ν^2)=0
    ↓λ^2+μ^2+ν^2>0だから両辺をλ^2+μ^2+ν^2で割ると

    t1+t2=0
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48863 / 親記事)  複素関数
□投稿者/ 積分 一般人(1回)-(2018/10/13(Sat) 21:50:57)
    複素関数の問題です
    この問題の解き方を教えてください。

    ∫[0〜π/2]{log(sinx)}^2dxの値を求めよ。

    Σ(n=0,∞)|an|^2×r^2n
    =(1/2π)∫[0〜2π] |f(re^iθ)|^2dθとする。
    (このとき
     f(z)=Σ_{n=0}^{∞}(a_n z^n) (|z|<R), 0<r<Rとする。)

    また、Σ(n=0,∞) (1/n^2)=π^2/6

    ∫[0〜1/2π]log(sinx)= -π/2log2とする。

     
引用返信/返信 [メール受信/OFF]



■記事リスト / ▲上のスレッド
■48857 / 親記事)  等式
□投稿者/ 喰レポ 一般人(1回)-(2018/10/07(Sun) 13:25:11)
    教えて下さい。

    相異なる数x,y,zが
    (2x-1)/(x-y)=(2y-1)/(y-z)=(2z-1)/(z-x)
    を満たしているとき、x,y,zのうち少なく
    とも一つは虚数であることを示せ。
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■48858 / ResNo.1)  Re[1]: 等式
□投稿者/ らすかる 一般人(28回)-(2018/10/07(Sun) 14:16:17)
    (2x-1)/(x-y)=(2y-1)/(y-z)=(2z-1)/(z-x)=kとおく。
    もしk=0とすると2x-1=2y-1=2z-1=0からx=y=z=1/2となり
    分母の条件 x-y≠0,y-z≠0,z-x≠0を満たさないので
    k≠0,x≠1/2,y≠1/2,z≠1/2
    k(x-y)=2x-1から y=((k-2)x+1)/k … (1)
    k(y-z)=2y-1から z=((k-2)y+1)/k … (2)
    k(z-x)=2z-1から x=((k-2)z+1)/k … (3)
    (1)を(2)に代入して整理すると
    z=(((k-2)^2)x+2k-2)/k^2 … (4)
    (4)を(3)に代入して整理すると
    (3k^2-6k+4)(2x-1)=0
    x≠1/2なので 3k^2-6k+4=0
    これを解いてk=1±i/√3
    x,y,zが全て実数のときkは実数となるので、
    k=1±i/√3であることからx,y,zのうち少なくとも一つは虚数。

引用返信/返信 [メール受信/OFF]
■48859 / ResNo.2)  Re[1]: 等式
□投稿者/ らすかる 一般人(29回)-(2018/10/07(Sun) 14:36:40)
    別解
    もし式の値が0だとすると2x-1=2y-1=2z-1=0からx=y=z=1/2となり
    分母の条件 x-y≠0,y-z≠0,z-x≠0を満たさないので矛盾。
    よって式の値は0ではないので全項を逆数にしても等号は成り立つ。
    (x-y)/(2x-1)=(y-z)/(2y-1)=(z-x)/(2z-1)から
    2(x-y)/(2x-1)=2(y-z)/(2y-1)=2(z-x)/(2z-1)
    1-(2y-1)/(2x-1)=1-(2z-1)/(2y-1)=1-(2x-1)/(2z-1)
    (2y-1)/(2x-1)=(2z-1)/(2y-1)=(2x-1)/(2z-1)
    この式の値をkとするとk^3=1だが
    もしk=1とするとx=y=zとなり矛盾するので
    kは1の虚数三乗根。
    従ってx,y,zのうち少なくとも二つは虚数とわかる。

引用返信/返信 [メール受信/OFF]
■48860 / ResNo.3)  Re[2]: 等式
□投稿者/ 喰レポ 一般人(2回)-(2018/10/07(Sun) 17:33:47)
    大変エレガントな別解に感動いたしました。
    ありがとうございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター