数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal一次結合と一次独立(0) | Nomal証明問題です(0) | Nomalz^5 = -1 を解く(2) | Nomal空間上の点(2) | Nomal熱力学の本に出てくる式変形がわかりません。(0) | Nomal複素関数の部分分数分解(4) | Nomalピタゴラス数の求め方(0) | Nomal二項定理を使ったピタゴラスの定理の証明(0) | Nomal二項定理を使ったフェルマーの最終定理の証明(0) | Nomal数学A 図形の計算(0) | Nomal2次方程式(3) | Nomalある式の微分における式変形について(2) | Nomal線形代数」(0) | Nomal統計学の問題(0) | Nomal3次元空間の点(2) | Nomal自然対数 e について(3) | Nomal1/(z^2-1) を z = 1 でローラン展開する。(2) | Nomal無限等比級数について(2) | Nomalcosの不等式(2) | Nomal品質の服(0) | Nomal積分の解き方について(0) | Nomal期待値(2) | Nomal複素平面上の円(2) | Nomal3の個数(7) | Nomal複素数の関数(5) | Nomal分数関数の積分(2) | Nomalベクトルについて。(1) | Nomalベクトルについて。(0) | Nomal線形代数 証明(0) | Nomalベクトル解析(1) | Nomalフーリエ展開とフーリエ変換(0) | Nomalベクトル解析のスカラー場について(2) | Nomal第2可算公理(0) | Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal無限和(2) | Nomal大学一年 線形代数(1) | Nomal大学で出された行列の課題がわかりません。(1) | Nomal 至急この問題を解説していただきたいです(0) | Nomal広義積分(0) | Nomal加速度の次元と速度の次元(1) | Nomal論理関数(0) | Nomal有理数(1) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal統計学 二項分布(0) | Nomal数列の一般項(2) | Nomal連立微分方程式(1) | Nomal全ての 整数解 等(0) | Nomal色々な方法 で(0) | Nomal初期値問題(1) | Nomal解析学(1) | Nomal統計学 確率密度関数 分布関数 確率(0) | Nomal対数尤度関数について!(0) | Nomal関数について(0) | Nomal解析学(2) | Nomal連立方程式(3) | Nomal論理を教えて下さい(12) | Nomal最小公倍数とはちがいますが。。(2) | Nomal消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学(2) | Nomal三次方程式(2) | Nomal線形代数(0) | Nomal極限(0) | Nomalボルスク・ウラムの定理の証明(0) | Nomal素数(0) | Nomalデルタ関数に関する問題(0) | Nomal正三角形と半円(2) | Nomal不等式(2) | Nomal漸化式(0) | Nomal統計学の質問(0) | Nomal行列のn乗(1) | Nomal確率変数(0) | Nomal確率における情報(17) | Nomal複数の点によって構成される多角形を相互の距離情報から類推する方法(6) | Nomal正射影再び(笑)(4) | Nomal正射影:正三角形→2等辺三角形(2) | Nomal球面上の2つの円の重なっている部分の面積(0) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal三角法(0) | Nomal大学数学です(0) | Nomal三角形(2) | Nomal数列の疑問(2) | Nomal素数積の評価〜ベルトラン・チェビシェフの定理(5) | Nomaleの極限(2) | Nomal積分(0) | Nomal四角形の極限(2) | Nomalcosの積分の評価(0) | Nomal動点の確率(2) | Nomalベルトラン・チェビシェフの定理について。(2) | Nomal極大と変曲(4) | Nomalsinの不等式(4) | Nomalピタゴラスの定理の簡単な証明(3) | Nomalフェルマーの最終定理の簡単な証明9(25) | Nomal複素積分の絶対値の評価(2) | Nomalリーマン積分可能性(3) |



■記事リスト / ▼下のスレッド
■49806 / 親記事)  掲示板について。
□投稿者/ コルム 一般人(2回)-(2019/07/24(Wed) 18:01:48)
    excelやwordの質問ができる掲示板を知らないでしょうか?教えてgoo を退会してしまったもので。すみません。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■49807 / ResNo.1)  Re[1]: 掲示板について。
□投稿者/ マルチポスト撲滅委員会 一般人(6回)-(2019/07/24(Wed) 19:45:14)
     例の Excel 掲示板でWord に関する質問をして叩き出されたんだなw

     知恵袋で質問するんだな。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■49791 / 親記事)  フェルマーの定理 RSA暗号
□投稿者/ yui 一般人(1回)-(2019/07/22(Mon) 22:49:20)
    フェルマーの小定理がRSA暗号による通信を可能にしている理由を教えていただけないでしょうか(/_;)
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■49793 / ResNo.1)  Re[1]: フェルマーの定理 RSA暗号
□投稿者/ 偽日高 一般人(26回)-(2019/07/23(Tue) 01:19:37)
    No49791に返信(yuiさんの記事)
    > フェルマーの小定理がRSA暗号による通信を可能にしている理由を教えていただけないでしょうか(/_;)

    tsujimotter.hatenablog.com/entry/rsa
    でも読めば?
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■49788 / 親記事)  等角写像の問題です。
□投稿者/ にゃー 一般人(1回)-(2019/07/22(Mon) 21:01:59)
    円C:|z-1| の内部を第一象限に移す等角写像を1つ求めたいのですが、やり方がわかりません…。 単位円と上半平面の等角写像がポイントなのかなと勝手に思っているのですが…。 どなたかご教示いただけないでしょうか。よろしくお願いいたします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■49789 / ResNo.1)  Re[1]: 等角写像の問題です。
□投稿者/ にゃー 一般人(3回)-(2019/07/22(Mon) 21:54:49)
    訂正 円C:|z-1|=1 です。
引用返信/返信 [メール受信/OFF]
■49812 / ResNo.2)  Re[2]: 等角写像の問題です。
□投稿者/ nakaiti 付き人(57回)-(2019/07/25(Thu) 19:41:16)
    あなたのところでの等角写像の定義はどのようになっていますか?普通に考えるとそのような等角写像は存在しないはずです。あまり厳密ではありませんがその理由は以下の通りです。

    仮にそのような等角写像が存在したとしてそれを w=f(z) としましょう。f による C の像は第一象限の境界である実軸の非負の部分と虚軸の上半分をつなげた折れ線 L になるはずで、特に原点に移される C の点 z0 が存在します。f は等角写像なので z0 における C の角度である 180°は保存されるはずですが、実際は 90°に変化してしまっています。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■49776 / 親記事)  フェルマーの最終定理の簡単な証明7
□投稿者/ 日高 大御所(286回)-(2019/07/21(Sun) 06:55:06)
    7/21どなたかご指摘いただけないでしょうか。
1240×1754 => 177×250

1563659706.png
/53KB
引用返信/返信 [メール受信/OFF]

▽[全レス101件(ResNo.97-101 表示)]
■49890 / ResNo.97)  Re[38]: フェルマーの最終定理の簡単な証明7
□投稿者/ 月 一般人(12回)-(2019/08/07(Wed) 21:38:03)
    > すみません。理解できないので、詳しく教えていただけないでしょうか。

    p = 3 のとき,
    x^3 + y^3 = (x + 3^(1/2))^3 から
    x^3 + y^3 = x^3 + 3*3^(1/2)x^2 + 3*3x + 3*3^(1/2),
    (3*3x - y^3) + (x^2 + 1)3*3^(1/2) = 0
    よって 3*3x = y^3, x^2 = -1 です。
引用返信/返信 [メール受信/ON]
■49891 / ResNo.98)  Re[39]: フェルマーの最終定理の簡単な証明7
□投稿者/ 日高 大御所(340回)-(2019/08/08(Thu) 07:53:59)
    No49890に返信(月さんの記事)
    >>すみません。理解できないので、詳しく教えていただけないでしょうか。
    >
    > p = 3 のとき,
    > x^3 + y^3 = (x + 3^(1/2))^3 から
    > x^3 + y^3 = x^3 + 3*3^(1/2)x^2 + 3*3x + 3*3^(1/2),
    > (3*3x - y^3) + (x^2 + 1)3*3^(1/2) = 0
    > よって 3*3x = y^3, x^2 = -1 です。

    (3*3x - y^3)=0, (x^2 + 1)=0とすると、x^2 = -1となりますが、
    (3*3x - y^3)=-10, (x^2 + 1)3*3^(1/2)=+10の場合も有ります。
引用返信/返信 [メール受信/OFF]
■49892 / ResNo.99)  Re[40]: フェルマーの最終定理の簡単な証明7
□投稿者/ 悶える亜素粉 一般人(28回)-(2019/08/08(Thu) 10:01:27)
     この屑のような話題はこのスレで打ち止めにすること。

     絶対に次スレを立てないこと!!!!!!!!!!!
引用返信/返信 [メール受信/OFF]
■49893 / ResNo.100)  Re[41]: フェルマーの最終定理の簡単な証明7
□投稿者/ 日高 大御所(341回)-(2019/08/08(Thu) 10:48:46)
    No49892に返信(悶える亜素粉さんの記事)
    >  この屑のような話題はこのスレで打ち止めにすること。
    >
    >  絶対に次スレを立てないこと!!!!!!!!!!!

    どの部分が「屑のような話題」かを、教えていただけないでしょうか。
引用返信/返信 [メール受信/OFF]
■49894 / ResNo.101)  Re[1]: フェルマーの最終定理の簡単な証明7
□投稿者/ 呆れ顔 一般人(6回)-(2019/08/09(Fri) 21:44:35)
    2019/08/09(Fri) 21:54:19 編集(投稿者)

    もはや答える必要はない.
    このスレ主には中学・高校程度の最低限の自然な数理的な推論能力が備わっていない.
    「教える」という行為はコーチングとティーチングに大別されるが,どちらも無駄になる.

    今までの無駄なやり取りを見ればわかるように,無駄な質問を繰り返すだけのレス数乞食だ.
    こういう輩を放置すると,コミュニティの快適性が損なわれるだけだから早い段階で無視するべき.

    損益分岐の判断基準は,
    1:「質問内容にふさわしいだけの知識と論証能力のどちらも欠落している」←コーチング不能
    2:「足りていない知識とスキルを説明しても理解する様子もなく,自分で調べる努力すらしない」←ティーチング不能
    3:「論理的根拠もなく,正当性を示すだけの能力もないのに自説には信念がある」←妄想

    これらの条件を満たしているなら他の質問者への回答にリソースを回すほうが建設的.
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-9] [10-19] [20-29] [30-39] [40-49] [50-59] [60-69] [70-79] [80-89] [90-99] [100-101]



■記事リスト / ▲上のスレッド
■49736 / 親記事)  グッチンコピー
□投稿者/ 弊店のグッチコピー等 一般人(1回)-(2019/07/19(Fri) 14:41:30)
http://www.secbrand.jp/brandlist-z-548.html
    グッチンコピー 人気ランキング1位です。弊店のグッチコピー等のは送料手数料で、品質2年保証です。お問合せ:secbrandjp@gmail.com 担当者:山本俊介
    www.secbrand.jp/
    www.secbrand.jp/brandlist-z-548.html
引用返信/返信 [メール受信/OFF]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター