数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
UpDate分数関数の積分(2) | Nomalベクトルについて。(1) | Nomalベクトルについて。(0) | Nomal線形代数 証明(0) | Nomalベクトル解析(1) | Nomalフーリエ展開とフーリエ変換(0) | Nomalベクトル解析のスカラー場について(2) | Nomal第2可算公理(0) | Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal無限和(2) | Nomal大学一年 線形代数(1) | Nomal大学で出された行列の課題がわかりません。(1) | Nomal 至急この問題を解説していただきたいです(0) | Nomal広義積分(0) | Nomal加速度の次元と速度の次元(1) | Nomal論理関数(0) | Nomal有理数(1) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal統計学 二項分布(0) | Nomal数列の一般項(2) | Nomal連立微分方程式(1) | Nomal全ての 整数解 等(0) | Nomal色々な方法 で(0) | Nomal初期値問題(1) | Nomal解析学(1) | Nomal統計学 確率密度関数 分布関数 確率(0) | Nomal対数尤度関数について!(0) | Nomal関数について(0) | Nomal解析学(2) | Nomal連立方程式(3) | Nomal論理を教えて下さい(12) | Nomal最小公倍数とはちがいますが。。(2) | Nomal消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学(2) | Nomal三次方程式(2) | Nomal線形代数(0) | Nomal極限(0) | Nomalボルスク・ウラムの定理の証明(0) | Nomal素数(0) | Nomalデルタ関数に関する問題(0) | Nomal正三角形と半円(2) | Nomal不等式(2) | Nomal漸化式(0) | Nomal統計学の質問(0) | Nomal行列のn乗(1) | Nomal確率変数(0) | Nomal確率における情報(17) | Nomal複数の点によって構成される多角形を相互の距離情報から類推する方法(6) | Nomal正射影再び(笑)(4) | Nomal正射影:正三角形→2等辺三角形(2) | Nomal球面上の2つの円の重なっている部分の面積(0) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal三角法(0) | Nomal大学数学です(0) | Nomal三角形(2) | Nomal数列の疑問(2) | Nomal素数積の評価〜ベルトラン・チェビシェフの定理(5) | Nomaleの極限(2) | Nomal積分(0) | Nomal四角形の極限(2) | Nomalcosの積分の評価(0) | Nomal動点の確率(2) | Nomalベルトラン・チェビシェフの定理について。(2) | Nomal極大と変曲(4) | Nomalsinの不等式(4) | Nomalピタゴラスの定理の簡単な証明(3) | Nomalフェルマーの最終定理の簡単な証明9(25) | Nomal複素積分の絶対値の評価(2) | Nomalリーマン積分可能性(3) | Nomalデデキントの切断による実数の構成(0) | Nomalベルトラン・チェビチェフの定理について。(0) | Nomalガウスの発散定理(0) | Nomal数列について。(0) | Nomal(1-x)^(-2)の展開式(2) | Nomal線形代数(0) | Nomal高校の範囲での証明(2) | Nomal京大特色(1) | Nomalこの表の見方を教えてください。(0) | Nomalヒルベルト空間(0) | Nomal$D_n$加群のフーリエ変換と関数のフーリエ変換との関係について(0) | Nomal群の問題(5) | Nomal合同式の計算(2) | Nomal統計/区画幅について(3) | Nomalプログラミング言語BASIC言語について。(14) | Nomal2変数関数の極値条件(2) | Nomal素数生成法について(0) | Nomal合同式の計算(4) | Nomal縦曲線について(0) | Nomal銃曲線における計画高ついて(0) | Nomal測量学について(0) | Nomal訂正です(1) | Nomal対数の取り方、シグモイド、ロジスティック関数(0) | Nomal緩和曲線の開始位置と終了地点および途中の高さxについて(0) | Nomalf'(x) の増減の判定方法(3) |



■記事リスト / ▼下のスレッド
■48889 / 親記事)  数列
□投稿者/ いらが 一般人(1回)-(2018/11/14(Wed) 11:54:47)
    数列a[n](n=1,2,3,...)を
    a[n]=n!*(Σ[k=n+1,∞]1/k!)
    と定めると、
    a[n]>a[n+1] (n=1,2,3,...)
    であることの証明を
    教えて下さい。
    お願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■48890 / ResNo.1)  Re[1]: 数列
□投稿者/ らすかる 一般人(32回)-(2018/11/14(Wed) 15:49:21)
    a[n]-a[n+1]
    ={n!Σ[k=n+1〜∞]1/k!}-{(n+1)!Σ[k=n+2〜∞]1/k!}
    =n!{{Σ[k=n+1〜∞]1/k!}-{(n+1)Σ[k=n+2〜∞]1/k!}}
    =n!{{Σ[k=n+1〜∞]1/k!}-{Σ[k=n+2〜∞]1/k!}-n{Σ[k=n+2〜∞]1/k!}}
    =n!{1/(n+1)!-n{Σ[k=n+2〜∞]1/k!}}
    >n!{1/(n+1)!-n{Σ[k=1〜∞]1/{(n+1)!(n+2)^k}}}
    ={n!/(n+1)!}{1-n{Σ[k=1〜∞]1/(n+2)^k}}
    ={1/(n+1)}{1-n/(n+1)}
    ={1/(n+1)}{1/(n+1)}
    =1/(n+1)^2
    >0
    なので
    a[n]>a[n+1]

引用返信/返信 [メール受信/OFF]
■48892 / ResNo.2)  Re[2]: 数列
□投稿者/ いらが 一般人(2回)-(2018/11/15(Thu) 10:23:52)
    有り難うございます。
    大変助かりました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48884 / 親記事)  統計学についての質問
□投稿者/ telly 一般人(1回)-(2018/11/07(Wed) 18:51:05)
    この写真の問いが分かりません。

    どのように解けばよいのでしょうか?
2293×3244 => 177×250

cbz6s-q4prx-001-min.jpg
/76KB
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■48885 / ResNo.1)  Re[1]: 統計学についての質問
□投稿者/ muturajcp 一般人(9回)-(2018/11/10(Sat) 11:06:27)
    Pは区間(0,1]における1次元ルベーグ測度とする
    確率変数Xに対する確率測度として考える
    ||X||∞=inf{x|P(|X|>x)=0}
    とすると
    (1)
    ω∈(0,1]
    X(ω)=ω
    の時
    ||X||∞
    =inf{x|P(|X|>x)=0}
    =inf{x|P(|ω|>x)=0}
    ↓ω∈(0,1]→0<ω≦1だから
    =inf{x|P(x<ω≦1)=0}
    =inf{x|P((x,1])=0}
    ↓P((x,1])=1-xだから
    =inf{x|1-x=0}
    =inf{x|x=1}
    =inf{1}
    =1

    (2)
    ω∈(0,1]
    X(ω)=cosω
    の時
    ||X||∞
    =inf{x|P(|X|>x)=0}
    =inf{x|P(|cosω|>x)=0}
    ↓ω∈(0,1]→0<ω≦1だから
    =inf{x|P(0<ω<arccos(x),ω≦1)=0}
    =inf{x|P((0,min(arccos(x),1)])=0}
    ↓P((0,min(arccos(x),1)])=min(arccos(x),1)だから
    =inf{x|arccos(x)=0}
    =inf{x|x=1}
    =inf{1}
    =1
引用返信/返信 [メール受信/OFF]
■48886 / ResNo.2)  Re[1]: 統計学についての質問
□投稿者/ muturajcp 一般人(10回)-(2018/11/10(Sat) 20:32:25)
    x/(2π),y/(2π),z/(2π)が有理数の場合
    0≦x/(2π)<1
    0≦y/(2π)<1
    0≦z/(2π)<1
    だから
    Q=(全有理数)
    Z=(全整数)
    N=(全自然数)
    f(n)=cos(nx)+cos(ny)+cos(nz)
    lim_{n→∞}f(n)=α
    {x/(2π),y/(2π),z/(2π)}⊂Q
    とすると
    x/(2π)=u/a
    y/(2π)=v/b
    z/(2π)=w/c
    {a,b,c}⊂N
    {u,v,w}⊂Z
    となるa,b,c,u,v,wがある
    ax=2uπ
    by=2vπ
    cz=2wπ
    だから
    n∈Nに対して
    k(n)=abcn
    とすると
    lim_{n→∞}f(k(n))
    =lim_{n→∞}cos(k(n)x)+cos(k(n)y)+cos(k(n)z)
    =lim_{n→∞}cos(abcnx)+cos(abcny)+cos(abcnz)
    =lim_{n→∞}cos(2bcnuπ)+cos(2acnvπ)+cos(2abnwπ)
    =3
    {f(k(n))}は{f(n)}の部分列だから
    部分列{f(k(n))}が3に収束するのだから
    {f(n)}も3に収束しなければならないから
    α=3
    lim_{n→∞}cos(nx)+cos(ny)+cos(nz)=3

    n∈Nに対して
    m(n)=abcn+1
    とすると
    lim_{n→∞}f(m(n))
    =lim_{n→∞}cos(m(n)x)+cos(m(n)y)+cos(m(n)z)
    =lim_{n→∞}cos((abcn+1)x)+cos((abcn+1)y)+cos((abcn+1)z)
    =lim_{n→∞}cos(2bcnuπ+x)+cos(2acnvπ+y)+cos(2abnwπ+z)
    =cos(x)+cos(y)+cos(z)
    ↓{f(m(n))}は{f(n)}の部分列だから
    ↓{f(n))}が3に収束するのだから
    ↓{f(m(n))}も3に収束しなければならないから
    =3

    cos(x)+cos(y)+cos(z)=3
    ↓cos(x)≦1,cos(y)≦1,cos(z)≦1だから
    cos(x)=1,cos(y)=1,cos(z)=1
    ↓0≦x<2π,0≦y<2π,0≦z<2πだから
    x=y=z=0
引用返信/返信 [メール受信/OFF]
■50360 / ResNo.3)  Re[1]: 統計学についての質問
□投稿者/ 大学生 一般人(1回)-(2020/06/04(Thu) 13:53:16)
    確率密度関数の分布関数と確率が分からないです。

    確率密度関数f(x)=x/2, 0<=x<=2において、
    1、分布関数を求めよ
    2、確率(0<=x<=1)を求めよ。
    3、確率(x=1.5)を求めよ。

    よろしくお願いします。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48875 / 親記事)  ベクトルについて。
□投稿者/ コルム 一般人(3回)-(2018/10/27(Sat) 18:37:44)
    各辺の長さが1で底面ABCDが正方形である四角錐O-ABCDがある。辺OBの中点をP、辺ODをt:(1-t) (0<t<1)に内分する点をQとし、平面APQと辺OCの交点 をRとする。 (1)↑ARを↑AP、↑AQ、tを用いて表せ。
    (2)四角形APRQの面積をtで表せ。
    教えていただけると幸いです。
引用返信/返信 [メール受信/OFF]

▽[全レス16件(ResNo.12-16 表示)]
■48913 / ResNo.12)  Re[1]: ベクトルについて。
□投稿者/ コルム 一般人(9回)-(2018/12/11(Tue) 12:14:27)
    どうしてそうなるのか教えていただけないでしょうか?
    ここです。
    B点P'をAP'↑=2*AP↑を満たす点とすると
    ↑AR={t/(1+t)}↑AP'+{1/(1+t)}↑AQ
    だから
    点Rは線分P'Qを1:tに内分している

引用返信/返信 [メール受信/OFF]
■48914 / ResNo.13)  Re[1]: ベクトルについて。
□投稿者/ コルム 一般人(10回)-(2018/12/11(Tue) 17:50:08)
    2が抜けているように思うのですが。教えていただけると幸いです。
引用返信/返信 [メール受信/OFF]
■48915 / ResNo.14)  Re[2]: ベクトルについて。
□投稿者/ muturajcp 一般人(20回)-(2018/12/15(Sat) 11:12:24)
    Rは平面APQ上の点だから
    ↑AR=x↑AP+y↑AQ…(1)
    となるx,yがある
    PはOBの中点だから
    ↑AP=(1/2)(↑AO+↑AB)…(2)
    QはODをt:(1-t)に内分する点だから
    ↑AQ=(1-t)↑AO+t↑AD
    これと(2)を(1)に代入すると
    ↑AR=x(1/2)(↑AO+↑AB)+y{(1-t)↑AO+t↑AD}
    ↑AR=(x/2)(↑AO+↑AB)+(1-t)y↑AO+ty↑AD
    ↑AR=(x/2)↑AO+(x/2)↑AB+(1-t)y↑AO+ty↑AD
    ↑AR=(x/2)↑AO+(1-t)y↑AO+(x/2)↑AB+ty↑AD
    ↑AR={(x/2)+(1-t)y}↑AO+(x/2)↑AB+ty↑AD…(3)

    Rは直線OC上の点だから
    ↑AR=(1-z)↑AO+z↑AC
    となるzがある
    ↓↑AC=↑AB+↑ADだから
    ↑AR=(1-z)↑AO+z(↑AB+↑AD)
    ↑AR=(1-z)↑AO+z↑AB+z↑AD
    これと(3)から
    {(x/2)+(1-t)y}↑AO+(x/2)↑AB+ty↑AD=(1-z)↑AO+z↑AB+z↑AD
    ↑AO,↑AB,↑ADは1次独立だから
    ↑AOの係数が等しいから
    (x/2)+(1-t)y=1-z…(4)
    ↑ABの係数が等しいから
    x/2=z…(5)
    ↑ADの係数が等しいから
    ty=z
    これと(5)から
    x/2=yt
    ↓両辺に2をかけると
    x=2yt…(6)
    (5)を(4)に代入すると
    (x/2)+y(1-t)=1-x/2
    ↓両辺にx/2を加えると
    x+y(1-t)=1
    ↓これに(6)を代入すると
    2yt+y(1-t)=1
    y(2t+1-t)=1
    y(1+t)=1
    ↓両辺を1+tで割ると
    y=1/(1+t)…(7)
    ↓これを(6)に代入すると
    x=2t/(1+t)
    これと(7)を(1)に代入すると

    ↑AR={2t/(1+t)}↑AP+{1/(1+t)}↑AQ
    ↑AR={t/(1+t)}(2↑AP)+{1/(1+t)}↑AQ
    ↓これに↑AP'=2↑APを代入すると

    ↑AR={t/(1+t)}↑AP'+{1/(1+t)}↑AQ
引用返信/返信 [メール受信/OFF]
■48916 / ResNo.15)  Re[2]: ベクトルについて。
□投稿者/ muturajcp 一般人(21回)-(2018/12/15(Sat) 21:51:28)
    (1)の答えの
    ↑AR={2t/(1+t)}↑AP+{1/(1+t)}↑AQ

    ↑AP'=2↑AP
    を代入すると
    ↑AR={t/(1+t)}↑AP'+{1/(1+t)}↑AQ
    となるので
    点Rは線分P'Qを1:tに内分している
1000×1000 => 250×250

m201810271837.jpg
/109KB
引用返信/返信 [メール受信/OFF]
■48927 / ResNo.16)  Re[1]: ベクトルについて。
□投稿者/ コルム 一般人(12回)-(2018/12/23(Sun) 13:02:00)
    助かりました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-9] [10-16]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■48870 / 親記事)  面積の最大値
□投稿者/ かい 一般人(2回)-(2018/10/26(Fri) 13:46:05)
    平面状に中心を共有する半径一の円と半径6の円があり半径一の円から一点と半径6からの円に点でできる三角形の面積の最大値を求めよ
    一応答えは出たのですが回りみんな違っていて自信がありません
    よければといていただきたいです
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■48871 / ResNo.1)  Re[1]: 面積の最大値
□投稿者/ らすかる 一般人(30回)-(2018/10/26(Fri) 14:35:20)
    半径1の円の直径ABをBの方向に延長してBC=3となる点をとり
    Cを通りACに垂直な直線と半径6の円の交点をD,Eとすれば
    △ADEが条件を満たす面積最大の三角形です。
    このときDE=4√5、AC=5、△ADE=10√5です。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■48869 / 親記事)  fw
□投稿者/ かい 一般人(1回)-(2018/10/26(Fri) 13:41:44)
    かいdp
引用返信/返信 [メール受信/OFF]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター