数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalデデキントの切断による実数の構成(0) | Nomalベルトラン・チェビチェフの定理について。(0) | Nomalガウスの発散定理(0) | Nomal数列について。(0) | Nomal(1-x)^(-2)の展開式(2) | Nomal線形代数(0) | Nomal高校の範囲での証明(2) | Nomal京大特色(1) | Nomalこの表の見方を教えてください。(0) | Nomalヒルベルト空間(0) | Nomal$D_n$加群のフーリエ変換と関数のフーリエ変換との関係について(0) | Nomal群の問題(5) | Nomal合同式の計算(2) | Nomal統計/区画幅について(3) | Nomalプログラミング言語BASIC言語について。(14) | Nomal2変数関数の極値条件(2) | Nomal素数生成法について(0) | Nomal合同式の計算(4) | Nomal縦曲線について(0) | Nomal銃曲線における計画高ついて(0) | Nomal測量学について(0) | Nomal訂正です(1) | Nomal対数の取り方、シグモイド、ロジスティック関数(0) | Nomal緩和曲線の開始位置と終了地点および途中の高さxについて(0) | Nomalf'(x) の増減の判定方法(3) | Nomal三角形と内接円について改(1) | Nomal三角形と内接円について。(1) | Nomal増減表の作り方(6) | Nomal三葉曲線の長さについて(2) | Nomal4次関数(3) | Nomal約数を mod 13 で見る(1) | Nomal自作問題(3) | Nomalsupreme 偽物(0) | Nomal(削除)(0) | Nomalケプラー方程式による惑星の会合計算(0) | Nomal追いかけ算 惑星会合時期(1) | Nomal担当者の時間割(2) | Nomal(削除)(0) | Nomalフェルマーの最終定理の簡単な証明9(23) | Nomal必要十分条件の証明(3) | Nomal合コン(4) | Nomal三次関数と長方形(4) | Nomal同型写像(0) | Nomal屑スレを下げるための問題(2) | Nomal基本的な確率(2) | Nomal中学生でも解けそうな入試問題001(1) | Nomal正2n角形と確率(4) | Nomal階段行列の作り方(4) | Nomalご教示ください(5) | Nomal統計学の問題です(0) | Nomal3の倍数(4) | Nomalラプラス方程式 境界条件(0) | Nomal対偶について(8) | Nomalsinの関係(2) | Nomal偶数と奇数(8) | Nomal2^(1/3)とωと√3(4) | Nomal supreme コート(0) | Nomalフェルマーの最終定理の簡単な証明8(74) | Nomal目的の形への行列の三角化(2) | Nomal掲示板について。(1) | Nomalフェルマーの定理 RSA暗号(1) | Nomal等角写像の問題です。(2) | Nomalフェルマーの最終定理の簡単な証明7(101) | Nomalグッチンコピー(0) | Nomal6次方程式(2) | Nomalベクトル解析 証明(0) | Nomal位相数学、位相空間(0) | Nomal実生活に活きる確率(0) | Nomalオイラーの公式 導関数の定義(2) | Nomal2階常微分方程式 (1) | Nomalオイラーの公式(3) | Nomalオイラーの公式(0) | Nomalオイラーの公式(3) | Nomalフェルマーの最終定理の簡単な証明6(101) | Nomal数学について。(1) | Nomal線形代数(1) | Nomal整数問題(1) | Nomalフェルマーの最終定理の簡単な証明5(101) | Nomal順列(4) | Nomal大小の比較(7) | Nomalシミュレーションについて(1) | Nomalフェルマーの最終定理の簡単な証明4(101) | Nomal数学について。(1) | Nomalフーリエ変換の求め方(1) | Nomalisometric matrix,p-ノルムについて(0) | Nomald(cos^2θ)/dθ=と置けるような相似の図を見つけたいです!(0) | Nomal1/ cos^2θの微分を画像の図を用いて解きたい!(0) | Nomalラグランジュの剰余項(1) | Nomallog2とマクローリン展開についての証明(1) | Nomal極限を求める(大学数学)(1) | Nomal期待値(2) | Nomal確率密度(2) | Nomal三角方程式(2) | Nomal方程式(2) | Nomal多項式の係数(1) | Nomalフェルマーの最終定理の簡単な証明3(76) | Nomal複素平面上の領域について(0) | Nomal数学検定について。(0) | Nomal複素解析(2) | Nomal定積分と体積(1) | Nomal極限値(3) |



■記事リスト / ▼下のスレッド
■47437 / 親記事)  級数
□投稿者/ 晃 一般人(1回)-(2015/08/09(Sun) 09:10:43)
    正項級数Σa_nが収束すると仮定します。
    このとき、収束する正項級数Σb_nで、
    lim[n→∞]b_n/a_n=∞
    をみたすものが存在しますか?
引用返信/返信 [メール受信/OFF]

▽[全レス4件(ResNo.1-4 表示)]
■47439 / ResNo.1)  Re[1]: 級数
□投稿者/ らすかる 大御所(365回)-(2015/08/09(Sun) 10:52:36)
    例えばa[n]=1/n^4, b[n]=1/n^2ならば
    Σa[n]=π^4/90, Σb[n]=π^2/6, lim[n→∞]b[n]/a[n]=∞
    となります。
引用返信/返信 [メール受信/OFF]
■47441 / ResNo.2)  Re[2]: 級数
□投稿者/ 晃 一般人(3回)-(2015/08/09(Sun) 10:59:03)
    すみません、聞きたいのは
    どのようなΣa_nについても、そのようなΣb_nが存在するだろうか?
    ということでした。
    分かりにくくてすみません…。
引用返信/返信 [メール受信/OFF]
■47444 / ResNo.3)  Re[3]: 級数
□投稿者/ らすかる 大御所(367回)-(2015/08/09(Sun) 15:34:35)
    「収束が最も遅い正項級数」が存在するか?
    ということでしょうか。
    難しいですね。存在しないような気がします
    (つまりΣb[n]は必ず存在する気がします)が、
    私には証明できそうにありません。
引用返信/返信 [メール受信/OFF]
■47457 / ResNo.4)  Re[2]: 級数
□投稿者/ at 一般人(1回)-(2015/08/11(Tue) 07:00:53)
    >どのようなΣa_nについても、そのようなΣb_nが存在するだろうか?
    >ということでした。


    はい。どのようなΣa_nに対しても、そのようなΣb_nが必ず存在します。
    つまり、収束する任意の正項級数Σa_nに対して、
    lim[n→∞]b_n/a_n=∞ を満たすような収束する正項級数Σb_nが存在します。

    s_n = a_1 + a_2 + .. + a_n,
    s = lim[n→∞]s_n
    とします。
    数列 {M_n} を次で定義します。
    1/M_1 = s, 1/M_(n+1) = s - s_n.
    このとき、{M_n}は単調増加であって、lim[n→∞]M_n = ∞ です。
    b_n = a_n * (M_n)^(1/2) とすれば、
    lim[n→∞]b_n/a_n = ∞ かつ Σb_n は収束 となります。

    Σb_n が収束することは次のように示せます。
    b_n = a_n * (M_n)^(1/2) = (M_(n+1)-M_n )/(M_(n+1)*(M_n)^(1/2))
    と書き表せます。
    一般に、正数α(≠1)と正整数 m,n (m < n) に対して、
    (1-α^m)/m > (1-α^n)/n
    が成り立ちます。
    α^n=c, m/n=k とおくと、
    (1-c^k) > k*(1-c)
    となります。ここで、
    c = M_n/M_(n+1), m = 1, n = 2 とすることによって、
    1-(M_n/M_(n+1))^(1/2) > (1/2)*(1-M_n/M_(n+1)),
    つまり、(M_(n+1)-M_n )/(M_(n+1)*(M_n)^(1/2)) < 2*((1/M_n)^(1/2)-(1/M_(n+1))^(1/2))
    となります。
    これは、b_n < 2*((1/M_n)^(1/2)-(1/M_(n+1))^(1/2)) を意味します。
    したがって、
    Σb_n < 2*Σ((1/M_n)^(1/2)-(1/M_(n+1))^(1/2)) = 2*(1/M_1)^(1/2).
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-4]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47436 / 親記事)  二項係数
□投稿者/ ティシュ 一般人(1回)-(2015/08/09(Sun) 08:02:31)


    の計算を教えて下さい。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47434 / 親記事)  連立一次方程式
□投稿者/ M 一般人(1回)-(2015/08/08(Sat) 01:46:18)
    a,b,c は異なる 数 とする。

    (1) M={{1, -a, a^2}, {1, -b, b^2}, {1, -c, c^2}}
    の 逆行列 M^(-1) を 求めよ。

    (2) M^(-1).{a^4, b^4, c^4} を 求めよ;

    (3) これで x,y,z に関する連立一次方程式 
    x - a y + a^2 z=a^4
    x - b y + b^2 z=b^2
    x - c y + c^2 z=c^2
    が 解けて しまった。

    それを明記して下さい;

    x=
    y=
    z=

    (4)         各解 は a,b,c に関する 対称式 です。

    各解は 基本対称式 A = a + b + c, B = a b + a c + b c, C = a b c 

              で 表わせるので表して下さい ;
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■47435 / ResNo.1)  Re[1]: 連立一次方程式
□投稿者/ M 一般人(2回)-(2015/08/08(Sat) 09:29:06)
    (3) これで x,y,z に関する連立一次方程式 
    x - a y + a^2 z=a^4
    x - b y + b^2 z=b^4
    x - c y + c^2 z=c^4
    が 解けて しまった。

    に 訂正します。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■47433 / 親記事)  有理数解
□投稿者/ たろう 一般人(3回)-(2015/08/07(Fri) 21:54:24)
    xyz = x+y+z = 6
    が無限に多くの有理数解(x,y,z)
    を持つことの証明を教えてください。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▲上のスレッド
■47429 / 親記事)  合成数
□投稿者/ はらばんど 一般人(2回)-(2015/08/04(Tue) 22:25:39)
    小さい方から数えてn番目の合成数をc[n]とするとき、
    lim[n→∞]c[n]/n≠1
    であることの証明を教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■47430 / ResNo.1)  Re[1]: 合成数
□投稿者/ らすかる 大御所(364回)-(2015/08/04(Tue) 23:16:57)
    素数定理から lim[n→∞]c[n]/n=1 となりそうな気がしますが、
    間違っていたらごめんなさい。
引用返信/返信 [メール受信/OFF]
■47432 / ResNo.2)  Re[2]: 合成数
□投稿者/ はらばんど 一般人(3回)-(2015/08/07(Fri) 15:42:09)
    本当ですね…
    失礼しました
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター