数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal高校数学 整数問題(4) | Nomal整数の表現の同値証明(4) | Nomal多項式の既約性(0) | Nomal円錐台の断面積(9) | Nomal相関係数と共分散(1) | Nomallogの計算(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal極限(3) | Nomal確率の問題が分かりません 助けてください(1) | Nomalメビウス変換(0) | Nomal複素数 写像 (0) | Nomal複素数平面(0) | Nomal複素数平面(1) | Nomal複素数 証明(難)(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(1) | Nomal複素数(1) | Nomal囲まれた面積(2) | Nomal極限の問題 2改(1) | Nomal微分可能な点を求める問題(1) | Nomal極限の問題2(1) | Nomal極限の問題(1) | Nomal複素数(2) | Nomal三角形(1) | Nomal確率(2) | Nomal三角数の和(0) | Nomalコラッツ予想(0) | Nomal低レベルな問題ですいません(2) | Nomal中学数学によるフェルマーの最終定理の証明(1) | Nomalガウス整数の平方和(8) | Nomal環でしょうか(2) | Nomal三角関数の式(0) | Nomal大学数学 位相数学(1) | Nomal確率(1) | Nomal1/{z^2(z-1)^2} z=0でローラン展開(1) | Nomal速度(2) | Nomali^iについて(2) | Nomal複素数平面(6) | Nomal(x+1)^n-x^n(1) | Nomal定積分(1) | Nomal円に内接する四角形(2) | Nomal多項式の整除(1) | Nomal代数学(1) | Nomal不等式(4) | Nomal大学数学(0) | Nomal極限(0) | Nomal有限体(0) | Nomal多項式(1) | Nomal場合の数(2) | Nomal同値関係が分かりません(0) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal質問(2) | Nomal不等式(2) | Nomal周期関数(1) | Nomal確立 基礎問題(2) | NomalCELINE コピー(0) | Nomalこれだけで求められるの?(3) | Nomal平方数(1) | Nomal係数(4) | Nomal不等式(2) | Nomal整数問題(1) | Nomal二次方程式の定数を求める(3) | Nomal正十二面体(2) | Nomal期待値(2) | Nomal複素数と図形(1) | Nomal大学の積分の問題です(0) | Nomal整数の例(4) | Nomal位相数学(0) | Nomalコラッツ予想について(0) | Nomalコラッツ予想について(0) | Nomal線形代数(0) | Nomalkkk(0) | Nomalお金がかからない(0) | Nomal大学数学難しすぎて分かりません。お願いします(0) | Nomal大学数学難しすぎて分かりません。。(0) | Nomal関数方程式(2) | Nomalコラッツ予想(0) | Nomalべズーの定理(0) | Nomal数学はゲーム(3) | Nomal解析学(0) | Nomal整数問題(1) | Nomal位相数学(1) | Nomal大学数学 位相数学(2) | Nomal数検準2級は難しい(0) | Nomal条件付き最大値問題について(0) | Nomal数列(2) | Nomal二項係数2nCn(1) | Nomal三角関数(0) | Nomalガウス記号(0) | Nomal確率(0) | Nomal式の値(2) | Nomal式の値(4) | Nomal外接円と内接円(1) | Nomal最小値(2) | Nomal最小値(2) | Nomal高校受験の問題です(4) | Nomal解析学(1) | Nomal確率分布(0) |



■記事リスト / ▼下のスレッド
■52416 / 親記事)  複素数
□投稿者/ はんなり 一般人(1回)-(2023/12/28(Thu) 17:21:29)
    α=e^(2πi/11)とし、複素数平面上の点A[k](α^k)(k=0,1,2,3,4,5)を考える。
    直線A[0]A[k](k=1,2,3,4,5)と原点O(0)の距離をd[k]とするとき、
    d[1]-d[2]+d[3]-d[4]+d[5]を求めよ。

    教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■52419 / ResNo.1)  Re[1]: 複素数
□投稿者/ X 一般人(4回)-(2023/12/29(Fri) 20:07:45)
    2023/12/29(Fri) 20:23:31 編集(投稿者)

    条件から
    d[k]=|(1+α^k)/2|
    ∴例えばzの共役複素数を\zと表すことにすると
    d[k]^2={(1+α^k)/2}{1+\(α^k)}/2
    =(1/4){1+α^k+\(α^k)+|α^k|^2}
    =(1/4){2+α^k+\(α^k)}
    更にθ=2π/11と置くと
    d[k]^2=(1/4)(2+2coskθ)
    ={cos(kθ/2)}^2
    ここでk=1,2,3,4,5より
    kθ/2<π/2
    ∴d[k]=cos(kθ/2)
    となるので
    e^(iθ/2)=β
    と置くと
    β^11=-1
    d[k]=(β^k+1/β^k)/2
    よって
    d[1]-d[2]+d[3]-d[4]+d[5]=Σ[k=1〜5]{(β^k+1/β^k)/2}(-1)^(k-1)
    =(1/2)Σ[k=1〜5]{β(-β)^(k-1)+(1/β)(-1/β)^(k-1)}
    =(1/2){β{1-(-β)^5}/(1+β)+(1/β){1-(-1/β)^5}/(1+1/β)}
    =(1/2){β(1+β^5)/(1+β)+(1/β^5)(1+β^5)/(1+β)}
    =(1/2)(1+β^5)(β+1/β^5)/(1+β)
    =(1/2)(1+β^5)(1+β^6)/{(1+β)β^5}
    =(1/2)(1+β^5+β^6+β^11)/{(1+β)β^5}
    =(1/2)(1+β^5+β^6-1)/{(1+β)β^5}
    =(1/2)(β^5+β^6)/{(1+β)β^5}
    =1/2
引用返信/返信 [メール受信/OFF]
■52434 / ResNo.2)  Re[2]: 複素数
□投稿者/ はんなり 一般人(2回)-(2024/01/01(Mon) 14:13:55)
    ありがとうございました!
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■52415 / 親記事)  三角形
□投稿者/ バイアス 一般人(1回)-(2023/12/28(Thu) 16:47:35)
    △OABにおいて角Oの大きさをθラジアンとする。
    2AB>(1-cosθ)(OA+OB)
    が成り立つことを示せ。

    教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■52420 / ResNo.1)  Re[1]: 三角形
□投稿者/ X 一般人(5回)-(2023/12/30(Sat) 07:59:07)
    2023/12/30(Sat) 09:09:48 編集(投稿者)

    2AB>(1-cosθ)(OA+OB)⇔2sinθ>(1-cosθ)(sinA+sinB) (∵)正弦定理
    ⇔2sin(A+B)>{1+cos(A+B)}(sinA+sinB) (A)
    ∴(A)を証明します。

    ((A)の左辺)-((A)の右辺)=2sin(A+B)-{1+cos(A+B)}(sinA+sinB)
    =2sin(A+B)-4sin{(A+B)/2}cos{(A-B)/2}{cos{(A+B)/2}}^2
    ((∵)和積の公式と半角の公式)
    =2sin(A+B)-2sin(A+B)cos{(A-B)/2}cos{(A+B)/2}
    =2sin(A+B){1-cos{(A-B)/2}cos{(A+B)/2}} (B)
    ここで
    0<A<π,0<B<π,0<θ<π (P)
    A+B+θ=π (Q)

    0<A+B<π
    なので
    sin(A+B)>0 (C)
    更に(P)(Q)より
    0<(A+B)/2<π/2
    -π/2<(A-B)/2<π/2
    又、
    (A+B)/2=(A-B)/2=0
    とはなりえないので
    cos{(A-B)/2}cos{(A+B)/2}<1 (D)
    (C)(D)より
    (B)>0
    よって(A)は成立します。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■52414 / 親記事)  確率
□投稿者/ Z 一般人(1回)-(2023/12/28(Thu) 16:17:22)
    2個のサイコロX,Yをn回投げる。
    k回目に出たX,Yの目をx[k],y[k]とする。
    x[1]y[1]+x[2]y[2]+…+x[n]y[n]
    が3の倍数になる確率を求めよ。

    教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■52417 / ResNo.1)  Re[1]: 確率
□投稿者/ WIZ 一般人(12回)-(2023/12/28(Thu) 21:22:46)
    2023/12/28(Thu) 22:48:19 編集(投稿者)

    a[k] = Σ[j=1,k]{x[j]y[j]}とおきます。

    k回目でa[k]の値が、3の倍数になる確率をp[k]、
    3で割った余りが1になる確率をq[k]、
    3で割った余りが2になる確率をr[k]とします。

    k = 1のとき、(x[1], y[1])の組み合わせは全部で6*6 = 36通りです。

    (1, 1)(1, 4)(2, 2)(2, 5)(4, 1)(4, 4)(5, 2)(5, 5)の8通りで
    x[1]y[1] ≡ 1 (mod 3)なので、q[1] = 8/36 = 2/9です。

    (1, 2)(1, 5)(2, 1)(2, 4)(4, 2)(4, 5)(5, 1)(5, 4)の8通りで
    x[1]y[1] ≡ 2 (mod 3)なので、r[1] = 8/36 = 2/9です。

    残りの20通りはx[1]またはy[1]が3の倍数なので、p[1] = 20/36 = 5/9です。

    k > 1のとき、
    a[k-1] ≡ 0 (mod 3)かつx[k]y[k] ≡ 0 (mod 3)または、
    a[k-1] ≡ 1 (mod 3)かつx[k]y[k] ≡ 2 (mod 3)または、
    a[k-1] ≡ 2 (mod 3)かつx[k]y[k] ≡ 1 (mod 3)なら、
    a[k] ≡ 0 (mod 3)なので、
    p[k] = (5/9)p[k-1]+(2/9)q[k-1]+(2/9)r[k-1]・・・(1)
    となります。

    a[k-1] ≡ 0 (mod 3)かつx[k]y[k] ≡ 1 (mod 3)または、
    a[k-1] ≡ 1 (mod 3)かつx[k]y[k] ≡ 0 (mod 3)または、
    a[k-1] ≡ 2 (mod 3)かつx[k]y[k] ≡ 2 (mod 3)なら、
    a[k] ≡ 1 (mod 3)なので、
    q[k] = (2/9)p[k-1]+(5/9)q[k-1]+(2/9)r[k-1]・・・(2)
    となります。

    a[k-1] ≡ 0 (mod 3)かつx[k]y[k] ≡ 2 (mod 3)または、
    a[k-1] ≡ 1 (mod 3)かつx[k]y[k] ≡ 1 (mod 3)または、
    a[k-1] ≡ 2 (mod 3)かつx[k]y[k] ≡ 0 (mod 3)なら、
    a[k] ≡ 2 (mod 3)なので、
    r[k] = (2/9)p[k-1]+(2/9)q[k-1]+(5/9)r[k-1]・・・(3)
    となります。

    (2)-(3)より、
    q[k]-r[k] = (3/9)q[k-1]-(3/9)r[k-1]
    ⇒ q[k]-r[k] = ((3/9)^(k-1))(q[1]-r[1]) = 0
    ⇒ q[k] = r[k]・・・(4)

    (4)→(1)より、
    p[k] = (5/9)p[k-1]+(4/9)q[k-1]
    ⇒ q[k-1] = (9/4)p[k]-(5/4)p[k-1]・・・(5)

    (4)(5)→(2)より、
    (9/4)p[k+1]-(5/4)p[k] = (2/9)p[k-1]+(7/9)((9/4)p[k]-(5/4)p[k-1])
    ⇒ (9/4)p[k+1]-(12/4)p[k]-(3/4)p[k-1] = 0
    ⇒ 3p[k+1]-p[k] = 3p[k]-p[k-1]・・・(6)

    (1)より、
    p[2] = (5/9)p[1]+(2/9)q[1]+(2/9)r[1] = 11/27・・・(7)

    (6)(7)より、
    3p[k+1]-p[k] = 3p[2]-p[1] = 2/3
    ⇒ 3p[k+1]-1 = p[k]-1/3
    ⇒ p[k]-1/3 = ((1/3)^(k-1))(p[1]-1/3) = 2/(3^(k+1))
    ⇒ p[k] = 1/3+2/(3^(k+1))

    上記はk = 1でも成り立ちます。
引用返信/返信 [メール受信/OFF]
■52436 / ResNo.2)  Re[2]: 確率
□投稿者/ Z 一般人(2回)-(2024/01/02(Tue) 15:24:17)
    詳しくありがとうございます。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■52413 / 親記事)  三角数の和
□投稿者/ きんぴら5号 一般人(8回)-(2023/12/18(Mon) 16:11:18)
    ガウスの三角数定理「全ての自然数は3個以下の三角数の和に表せる」の証明ですが
    ガウス整数論の二次形式論(三元二次形式)から帰結される
    三平方和定理「mとkを非負整数とし(4^m)(8k+7)の形に表せない自然数は3個以下の自然数の平方の和に表せる」
    を根拠としているものしか見つけられませんでした。

    二次形式論を使用しない初等的な証明はないのでしょうか?
    (三角数定理または三平方和定理の初等的な証明は存在するのでしょうか?)

    もう一つ「全ての自然数が3個以下の三角数の和」かつ「自然数は乗法に閉じている」ことから
    「3個以下の三角数の和に表せる数は乗法に閉じている」といえると思います。
    このことを直接証明することはできるのでしょうか?

    n,u,a,b,c,v,p,q,rは非負整数としてT(n)=n(n+1)/2とおきます。
    u=T(a)+T(b)+T(c),v=T(p)+T(q)+T(r)ならば
    uv=T(x)+T(y)+T(z)となる非負整数x,y,zは存在すると言えるでしょうか?

    よろしくお願いいたします。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▲上のスレッド
■52412 / 親記事)  コラッツ予想
□投稿者/ 成清 愼 一般人(1回)-(2023/12/17(Sun) 12:43:52)
    twitter.com/makotonarikiyo/status/1733705839184331230
    宜しくご査収の上ご批評賜りたくお願い申し上げます。
引用返信/返信 [メール受信/ON]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター