数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal円錐台の断面積(9) | Nomal相関係数と共分散(1) | Nomallogの計算(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal極限(3) | Nomal確率の問題が分かりません 助けてください(1) | Nomalメビウス変換(0) | Nomal複素数 写像 (0) | Nomal複素数平面(0) | Nomal複素数平面(1) | Nomal複素数 証明(難)(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(1) | Nomal複素数(1) | Nomal囲まれた面積(2) | Nomal極限の問題 2改(1) | Nomal微分可能な点を求める問題(1) | Nomal極限の問題2(1) | Nomal極限の問題(1) | Nomal複素数(2) | Nomal三角形(1) | Nomal確率(2) | Nomal三角数の和(0) | Nomalコラッツ予想(0) | Nomal低レベルな問題ですいません(2) | Nomal中学数学によるフェルマーの最終定理の証明(1) | Nomalガウス整数の平方和(8) | Nomal環でしょうか(2) | Nomal三角関数の式(0) | Nomal大学数学 位相数学(1) | Nomal確率(1) | Nomal1/{z^2(z-1)^2} z=0でローラン展開(1) | Nomal速度(2) | Nomali^iについて(2) | Nomal複素数平面(6) | Nomal(x+1)^n-x^n(1) | Nomal定積分(1) | Nomal円に内接する四角形(2) | Nomal多項式の整除(1) | Nomal代数学(1) | Nomal不等式(4) | Nomal大学数学(0) | Nomal極限(0) | Nomal有限体(0) | Nomal多項式(1) | Nomal場合の数(2) | Nomal同値関係が分かりません(0) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal質問(2) | Nomal不等式(2) | Nomal周期関数(1) | Nomal確立 基礎問題(2) | NomalCELINE コピー(0) | Nomalこれだけで求められるの?(3) | Nomal平方数(1) | Nomal係数(4) | Nomal不等式(2) | Nomal整数問題(1) | Nomal二次方程式の定数を求める(3) | Nomal正十二面体(2) | Nomal期待値(2) | Nomal複素数と図形(1) | Nomal大学の積分の問題です(0) | Nomal整数の例(4) | Nomal位相数学(0) | Nomalコラッツ予想について(0) | Nomalコラッツ予想について(0) | Nomal線形代数(0) | Nomalkkk(0) | Nomalお金がかからない(0) | Nomal大学数学難しすぎて分かりません。お願いします(0) | Nomal大学数学難しすぎて分かりません。。(0) | Nomal関数方程式(2) | Nomalコラッツ予想(0) | Nomalべズーの定理(0) | Nomal数学はゲーム(3) | Nomal解析学(0) | Nomal整数問題(1) | Nomal位相数学(1) | Nomal大学数学 位相数学(2) | Nomal数検準2級は難しい(0) | Nomal条件付き最大値問題について(0) | Nomal数列(2) | Nomal二項係数2nCn(1) | Nomal三角関数(0) | Nomalガウス記号(0) | Nomal確率(0) | Nomal式の値(2) | Nomal式の値(4) | Nomal外接円と内接円(1) | Nomal最小値(2) | Nomal最小値(2) | Nomal高校受験の問題です(4) | Nomal解析学(1) | Nomal確率分布(0) | Nomal整数問題(2) | Nomal関数の合成(0) | Nomal素数(2) |



■記事リスト / ▼下のスレッド
■50911 / 親記事)  三角比
□投稿者/ 数学 一般人(3回)-(2021/07/11(Sun) 00:54:27)
    −tan65°を45°以下の三角比で表すとき、
    −がついていても大丈夫なのでしょうか?
    -がついている場合、(90°−θ)はどのように考えれば良いのですか?
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50912 / ResNo.1)  Re[1]: 三角比
□投稿者/ らすかる 付き人(63回)-(2021/07/11(Sun) 05:54:35)
    問題によりますので、その質問だけでは判断できません。
引用返信/返信 [メール受信/OFF]
■50919 / ResNo.2)  Re[1]: 三角比
□投稿者/ 数学 一般人(6回)-(2021/07/13(Tue) 03:57:57)
    分かりました。考え直してみます。ありがとうございました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50906 / 親記事)  jacobson根基の同値な性質について
□投稿者/ もけもけ 一般人(1回)-(2021/07/10(Sat) 00:52:42)
    Rのjacobson根基をJ(R)とする。但しここでのjacobson根基の定義は、Rの全ての極大イデアルの共通部分とする。

    この時、rがJ(R)の元であることと、1+〈r〉の任意の元が単元であることが同値であることを示せ。(〈r〉はrで生成される単項イデアルです)

    この問題が分かりません。どなたか解説して頂けませんか?
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■51788 / ResNo.1)  Re[1]: jacobson根基の同値な性質について
□投稿者/ nacky 一般人(1回)-(2021/12/22(Wed) 09:40:56)
    背理法を使いましょう.
    r∈J(R), a∈R とし 1+ar が単元でないと仮定して矛盾を導きます.

    1+ar が単元でないのである極大イデアル M が存在して 1+ar∈M が成り立ちます.
    r は J(R) の元なので r∈M です.
    すると 1=(1+ar)-ar∈M となり M が極大イデアルであることに矛盾します.
    よって 1+ar は単元です.
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50901 / 親記事)  積分の漸化式
□投稿者/ 積分 一般人(1回)-(2021/07/09(Fri) 09:15:14)
    I[n]=∫((1+cosx)/2)^(n-1)(-1/cosx)^ndx
    と定めるときI[n+1]をI[n]であらわせ。

    この問題が解けません。教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50902 / ResNo.1)  Re[1]: 積分の漸化式
□投稿者/ 積分 一般人(2回)-(2021/07/09(Fri) 15:01:07)
    No50901に返信(積分さんの記事)
    > I[n]=∫((1+cosx)/2)^(n-1)(-1/cosx)^ndx
    > と定めるときI[n+1]をI[n]であらわせ。
    >
    > この問題が解けません。教えて下さい。


    解決しました。ありがとうございました。
解決済み!
引用返信/返信 [メール受信/OFF]
■50903 / ResNo.2)  Re[2]: 積分の漸化式
□投稿者/ 積分 一般人(3回)-(2021/07/09(Fri) 15:25:41)
    上の人は別人です。なりすましです。
    まだ解決していません。

    引き続きご指導よろしくお願いします。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50893 / 親記事)  ベクトルの大きさ
□投稿者/ 掛け流し掛け流し 一般人(1回)-(2021/07/07(Wed) 23:39:36)
    平面上のベクトル a,bが

      |a+2b|=1、|2a−b|=1

    を満たしているとき、|a−2b|の取り得る値の範囲を求めよ。

    (答えは、1/5<=|a−2b|<=7/5)

    の解法を教えてください。

    よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■50895 / ResNo.1)  Re[1]: ベクトルの大きさ
□投稿者/ WIZ 一般人(12回)-(2021/07/08(Thu) 13:44:08)
    2021/07/08(Thu) 15:19:21 編集(投稿者)

    xy座標でべクトルを原点 (0, 0) を始点とた終点の座標 (x, y) で表すことにすると、
    |(x, y)| = √(x^2+y^2) です。

    p, q, r, s を実数として、a = (p, q), b = (r, s) とします。

    |a+2b| = |(p, q)+2(r, s)| = |(p+2r, q+2s)| = 1
    ⇒ (p+2r)^2+(q+2s)^2 = 1^2 ・・・・・(0)

    上記より、ある実数 u が存在して
    p+2r = cos(u) ・・・・・(1)
    q+2s = sin(u) ・・・・・(2)
    とおけます。

    |2a-b| = |2(p, q)-(r, s)| = |(2p-r, 2q-s)| = 1
    ⇒ (2p-r)^2+(2q-s)^2 = 1^2

    上記より、ある実数 v が存在して
    2p-r = cos(v) ・・・・・(3)
    2q-s = sin(v) ・・・・・(4)
    とおけます。

    (1)(3)より
    (p+2r)+2(2p-r) = cos(u)+2cos(v)
    ⇒ p = (cos(u)+2cos(v))/5 ・・・・・(5)
    ⇒ r = 2(cos(u)+2cos(v))/5-cos(v) = (2cos(u)-cos(v))/5 ・・・・・(6)

    (2)(4)より
    (q+2s)+2(2q-s) = sin(u)+2sin(v)
    ⇒ q = (sin(u)+2sin(v))/5 ・・・・・(7)
    ⇒ s = 2(sin(u)+2sin(v))/5-sin(v) = (2sin(u)-sin(v))/5 ・・・・・(8)

    |a-2b| = |(p, q)-2(r, s)| = |(p-2r, q-2s)|
    ⇒ |a-2b|^2 = (p-2r)^2+(q-2s)^2 = (p+2r)^2+(q+2s)^2-8pr-8qs
    (0)(5)(6)(7)(8)より、
    ⇒ |a-2b|^2 = 1-8((cos(u)+2cos(v))/5)((2cos(u)-cos(v))/5)-8((sin(u)+2sin(v))/5)((2sin(u)-sin(v))/5)
    = 1-(8/25)((cos(u)+2cos(v))(2cos(u)-cos(v))+(sin(u)+2sin(v))(2sin(u)-sin(v)))
    = 1-(8/25)(2cos(u)^2+3cos(u)cos(v)-2cos(v)^2+2sin(u)^2+3sin(u)sin(v)-2sin(v)^2)
    = 1-(8/25)(2(cos(u)^2+sin(u)^2)+3(cos(u)cos(v)+sin(u)sin(v))-2(cos(v)^2+sin(v)^2))
    = 1-(8/25)(2+3cos(u-v)-2)
    = 1-(24/25)cos(u-v)

    -1 ≦ cos(u-v) ≦ 1 ですから
    1-(24/25)(1) ≦ |a-2b|^2 ≦ 1-(24/25)(-1)
    ⇒ 1/25 ≦ |a-2b|^2 ≦ 49/25

    |a-2b| ≧ 0 だから、1/5 ≦ |a-2b| ≦ 7/5 となります。
引用返信/返信 [メール受信/OFF]
■50897 / ResNo.2)  Re[2]: ベクトルの大きさ
□投稿者/ 掛け流し掛け流し 一般人(2回)-(2021/07/09(Fri) 02:30:10)
    分かりずらいよ。もっと短く説明して
引用返信/返信 [メール受信/OFF]
■51789 / ResNo.3)  Re[1]: ベクトルの大きさ
□投稿者/ nacky 一般人(2回)-(2021/12/22(Wed) 10:08:19)
    x=a+2b, y=2a-b とおくと条件より |x|=|y|=1 であり
    a=(x+2y)/5, b=(2x-y)/5
    となります.
    よって
    a-2b=(-3x+4y)/5
    となるので問題は
    「|x|=|y|=1 のとき |(-3x+4y)/5| の範囲を求めよ」
    と言い換えることができます. これを解きましょう.

    まず

    |(-3x+4y)/5|=|-3x+4y|/5

    なので |-3x+4y| の範囲を調べます.
    二つのベクトル u,v の内積を単に積の様に uv と書くことにすると

    |-3x+4y|^2=(-3x+4y)(-3x+4y)
    =9|x|^2-24xy+16|y|^2
    =25-24xy   (|x|=|y|=1 を使った)

    内積の定義より

    xy=|x||y|cosθ=cosθ

    となり

    -1<=xy<=1

    となることがわかるので

    1<=|-3x+4y|^2<=49.

    |-3x+4y| は非負の数なので

    1<=|-3x+4y|<=7

    したがって

    1/5<=|(-3x+4y)/5|<=7/5

    である.

    以上から答えのとおり

    1/5<=|a-2b|<=7/5

    が得られました.

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▲上のスレッド
■50891 / 親記事)  幾何学の院試問題です。
□投稿者/ kisuke 一般人(4回)-(2021/07/07(Wed) 17:41:02)
    IとJをそれぞれRの閉区間[-1,1]と開区間[-1,1]とする。Iの部分集合からなる集合Tを次のように定める。
    T={U⊂I|0&#13097;⊂U(含まない)}∪ {U⊂I|JU⊂}
    (1)TはIの位相であることを示せ
    (2)位相空間(I,T)はハウスドルフ空間でないことを示せ
    (3)位相空間(I,T)はコンパクトであることを示せ

    宜しくお願い致します。。
引用返信/返信 [メール受信/OFF]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター