数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal指数計算の練習(2) | Nomal微分積分(0) | Nomalテイラー展開(0) | Nomal合同式(1) | Nomalエルミート行列(0) | Nomal【大学数学】貨幣需要関数(0) | Nomal陰関数(0) | Nomal統計学(0) | Nomalベクトル空間(0) | Nomalフェルマーの最終定理の証明(6) | Nomal複素数の三角不等式(引き算)(2) | Nomal微分の問題(0) | Nomal体積(1) | Nomalフェルマーの最終定理の証明(z=x+rとおく方法)(1) | Nomal微分可能(2) | Nomalチェビシェフ 偏差値(0) | Nomal線形代数(1) | Nomal複素積分(2) | Nomal線形変換(1) | Nomalテイラー展開(2) | Nomal大学数学 線形代数 部分空間の証明(0) | Nomal証明問題(1) | Nomal一次結合と一次独立(0) | Nomal証明問題です(0) | Nomalz^5 = -1 を解く(2) | Nomal空間上の点(2) | Nomal熱力学の本に出てくる式変形がわかりません。(0) | Nomal複素関数の部分分数分解(4) | Nomalピタゴラス数の求め方(0) | Nomal二項定理を使ったピタゴラスの定理の証明(0) | Nomal二項定理を使ったフェルマーの最終定理の証明(0) | Nomal数学A 図形の計算(0) | Nomal2次方程式(3) | Nomalある式の微分における式変形について(2) | Nomal線形代数」(0) | Nomal統計学の問題(0) | Nomal3次元空間の点(2) | Nomal自然対数 e について(3) | Nomal1/(z^2-1) を z = 1 でローラン展開する。(2) | Nomal無限等比級数について(2) | Nomalcosの不等式(2) | Nomal品質の服(0) | Nomal積分の解き方について(0) | Nomal期待値(2) | Nomal複素平面上の円(2) | Nomal3の個数(7) | Nomal複素数の関数(5) | Nomal分数関数の積分(2) | Nomalベクトルについて。(1) | Nomalベクトルについて。(0) | Nomal線形代数 証明(0) | Nomalベクトル解析(1) | Nomalフーリエ展開とフーリエ変換(0) | Nomalベクトル解析のスカラー場について(2) | Nomal第2可算公理(0) | Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal無限和(2) | Nomal大学一年 線形代数(1) | Nomal大学で出された行列の課題がわかりません。(1) | Nomal 至急この問題を解説していただきたいです(0) | Nomal広義積分(0) | Nomal加速度の次元と速度の次元(1) | Nomal論理関数(0) | Nomal有理数(1) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal統計学 二項分布(0) | Nomal数列の一般項(2) | Nomal連立微分方程式(1) | Nomal全ての 整数解 等(0) | Nomal色々な方法 で(0) | Nomal初期値問題(1) | Nomal解析学(1) | Nomal統計学 確率密度関数 分布関数 確率(0) | Nomal対数尤度関数について!(0) | Nomal関数について(0) | Nomal解析学(2) | Nomal連立方程式(3) | Nomal論理を教えて下さい(12) | Nomal最小公倍数とはちがいますが。。(2) | Nomal消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学(2) | Nomal三次方程式(2) | Nomal線形代数(0) | Nomal極限(0) | Nomalボルスク・ウラムの定理の証明(0) | Nomal素数(0) | Nomalデルタ関数に関する問題(0) | Nomal正三角形と半円(2) | Nomal不等式(2) | Nomal漸化式(0) | Nomal統計学の質問(0) | Nomal行列のn乗(1) | Nomal確率変数(0) | Nomal確率における情報(17) |



■記事リスト / ▼下のスレッド
■50371 / 親記事)  連立微分方程式
□投稿者/ gunma 一般人(1回)-(2020/06/16(Tue) 15:15:36)
    x′1 =−5x1 +4x2,
    x′2 =−9x1 +7x2 +te^t
    解答をお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■50376 / ResNo.1)  Re[1]: 連立微分方程式
□投稿者/ WIZ 一般人(2回)-(2020/06/17(Wed) 10:31:59)
    u = u(t) = x1(t), v = v(t) = x2(t) とおきます。

    u' = -5u+4v・・・・・(1)
    v' = -9u+7v+t(e^t)・・・・・(2)

    (1)より、
    v = (1/4)(u'+5u)・・・・・(3)
    v' = (1/4)(u''+5u')・・・・・(4)

    (3)(4)を(2)に代入して、
    (1/4)(u''+5u') = -9u+7(1/4)(u'+5u)+t(e^t)
    ⇒ u''+5u' = -36u+7(u'+5u)+4t(e^t)
    ⇒ u''-2u'+u = 4t(e^t)
    ⇒ (u''-u')-(u'-u) = 4t(e^t)
    ⇒ {(u'-u)(e^(-t))}' = 4t
    ⇒ (u'-u)(e^(-t)) = 2t^2+C (Cは積分定数)
    ⇒ {u(e^(-t))}' = 2t^2+C
    ⇒ u(e^(-t)) = (2/3)t^3+Ct+D (Dは積分定数)
    ⇒ u = (e^t){(2/3)t^3+Ct+D}

    検算
    u' = (e^t){(2/3)t^3+Ct+D}+(e^t){2t^2+C} = (e^t){(2/3)t^3+2t^2+Ct+C+D}
    u'' = (e^t){(2/3)t^3+2t^2+Ct+C+D}+(e^t){2t^2+4t+C} = (e^t){(2/3)t^3+4t^2+(C+4)t+2C+D}
    {u''-2u'+u}(e^(-t)) = {(2/3)t^3+Ct+D}-2{(2/3)t^3+2t^2+Ct+C+D}+{(2/3)t^3+4t^2+(C+4)t+2C+D} = 4t
    OK!

    上記結果を(3)に代入して、
    v = (1/4)(e^t){{(2/3)t^3+2t^2+Ct+C+D}+5{(2/3)t^3+Ct+D}}
    = (1/4)(e^t){(12/3)t^3+2t^2+6Ct+C+6D}
    = (e^t){t^3+(1/2)t^2+(3/2)Ct+(C+6D)/4}

    検算
    v' = (e^t){t^3+(1/2)t^2+(3/2)Ct+(C+6D)/4}+(e^t){3t^2+t+(3/2)C}
    = (e^t){t^3+(7/2)t^2+(3C/2+1)t+(7C+6D)/4}

    -9u+7v+t(e^t) = (e^t){-9{(2/3)t^3+Ct+D}+7{t^3+(1/2)t^2+(3/2)Ct+(C+6D)/4}+t}
    = (e^t){-6t^3-9Ct-9D+7t^3+(7/2)t^2+(21/2)Ct+(7C+42D)/4+t}
    = (e^t){t^3+(7/2)t^2+(3C/2+1)t+(7C+6D)/4}
    OK!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50369 / 親記事)  全ての 整数解 等
□投稿者/ nomi 一般人(2回)-(2020/06/16(Tue) 05:32:58)
    [1] K x y^2+48 x^4+372 x^3 y+124 x^3+929 x^2 y^2+648 x^2 y+108 x^2
      +804 x y^3+324 x y+36 x+216 y^4+354 y^3+203 y^2+48 y+4 
      を @@多様な発想で@@ Kを定め 二次式の積[因数分解]表現願います;

    [2] 為された 二次式の積=0 を満たす 整数解を 2つ明記願います;
    [3] 二次式の積=0 なる 各 2次曲線 の 名は?
    双曲線が出現したなら 漸近線を 導出法を 明記し 求めて下さい;

    [3] さらに 全ての 整数解を 導出過程を 明記し 是非 求めて下さい;
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50366 / 親記事)  色々な方法 で
□投稿者/ Fa 一般人(1回)-(2020/06/15(Mon) 15:37:52)
    C(k); 12-10 x+2 x^2+7 y-3 x y-y*k-y^2*k=0 で 
        k∈R の時 殆ど曲がった曲線 ですが
    2直線に分解するような k を 色々な方法 で求めよ(を教えて)


引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50364 / 親記事)  初期値問題
□投稿者/ t 一般人(1回)-(2020/06/13(Sat) 01:47:12)
    初期値問題です
    x′′ +x = sintx   
    (0)=1, x(0)=0.
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■50365 / ResNo.1)  Re[1]: 初期値問題
□投稿者/ q 一般人(1回)-(2020/06/15(Mon) 15:18:41)
    No50364に返信(tさんの記事)
    > 初期値問題です
    > x′′ +x = sintx   
    > (0)=1, x(0)=0.
    問題は正確ですか.....
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■50362 / 親記事)  解析学
□投稿者/ とら 一般人(1回)-(2020/06/08(Mon) 17:47:48)
    解析学の問題です
    どこの座標を置いて解いていくのかすら分かってないです
726×496 => 250×170

094C3E5C-AC01-4610-AD1A-52D1DB0A5D44.jpeg
/144KB
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■50363 / ResNo.1)  Re[1]: 解析学
□投稿者/ とら 一般人(2回)-(2020/06/08(Mon) 17:50:36)
    画像が切れていました すみません
749×569 => 250×189

EF137DE5-95B8-426B-9926-DB33D5ACAFF4.jpeg
/164KB
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター