数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal指数計算の練習(2) | Nomal微分積分(0) | Nomalテイラー展開(0) | Nomal合同式(1) | Nomalエルミート行列(0) | Nomal【大学数学】貨幣需要関数(0) | Nomal陰関数(0) | Nomal統計学(0) | Nomalベクトル空間(0) | Nomalフェルマーの最終定理の証明(6) | Nomal複素数の三角不等式(引き算)(2) | Nomal微分の問題(0) | Nomal体積(1) | Nomalフェルマーの最終定理の証明(z=x+rとおく方法)(1) | Nomal微分可能(2) | Nomalチェビシェフ 偏差値(0) | Nomal線形代数(1) | Nomal複素積分(2) | Nomal線形変換(1) | Nomalテイラー展開(2) | Nomal大学数学 線形代数 部分空間の証明(0) | Nomal証明問題(1) | Nomal一次結合と一次独立(0) | Nomal証明問題です(0) | Nomalz^5 = -1 を解く(2) | Nomal空間上の点(2) | Nomal熱力学の本に出てくる式変形がわかりません。(0) | Nomal複素関数の部分分数分解(4) | Nomalピタゴラス数の求め方(0) | Nomal二項定理を使ったピタゴラスの定理の証明(0) | Nomal二項定理を使ったフェルマーの最終定理の証明(0) | Nomal数学A 図形の計算(0) | Nomal2次方程式(3) | Nomalある式の微分における式変形について(2) | Nomal線形代数」(0) | Nomal統計学の問題(0) | Nomal3次元空間の点(2) | Nomal自然対数 e について(3) | Nomal1/(z^2-1) を z = 1 でローラン展開する。(2) | Nomal無限等比級数について(2) | Nomalcosの不等式(2) | Nomal品質の服(0) | Nomal積分の解き方について(0) | Nomal期待値(2) | Nomal複素平面上の円(2) | Nomal3の個数(7) | Nomal複素数の関数(5) | Nomal分数関数の積分(2) | Nomalベクトルについて。(1) | Nomalベクトルについて。(0) | Nomal線形代数 証明(0) | Nomalベクトル解析(1) | Nomalフーリエ展開とフーリエ変換(0) | Nomalベクトル解析のスカラー場について(2) | Nomal第2可算公理(0) | Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal弘前大学 2010年度 理系 過去問です。(1) | Nomal無限和(2) | Nomal大学一年 線形代数(1) | Nomal大学で出された行列の課題がわかりません。(1) | Nomal 至急この問題を解説していただきたいです(0) | Nomal広義積分(0) | Nomal加速度の次元と速度の次元(1) | Nomal論理関数(0) | Nomal有理数(1) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal統計学 二項分布(0) | Nomal数列の一般項(2) | Nomal連立微分方程式(1) | Nomal全ての 整数解 等(0) | Nomal色々な方法 で(0) | Nomal初期値問題(1) | Nomal解析学(1) | Nomal統計学 確率密度関数 分布関数 確率(0) | Nomal対数尤度関数について!(0) | Nomal関数について(0) | Nomal解析学(2) | Nomal連立方程式(3) | Nomal論理を教えて下さい(12) | Nomal最小公倍数とはちがいますが。。(2) | Nomal消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学(2) | Nomal三次方程式(2) | Nomal線形代数(0) | Nomal極限(0) | Nomalボルスク・ウラムの定理の証明(0) | Nomal素数(0) | Nomalデルタ関数に関する問題(0) | Nomal正三角形と半円(2) | Nomal不等式(2) | Nomal漸化式(0) | Nomal統計学の質問(0) | Nomal行列のn乗(1) | Nomal確率変数(0) | Nomal確率における情報(17) |



■記事リスト / ▼下のスレッド
■50421 / 親記事)  線形代数
□投稿者/ Fav. 一般人(1回)-(2020/07/29(Wed) 01:16:19)
    ファイルに添付した問題が分かりません。30日までなのでなるべく急いでお願いします。
1108×1478 => 187×250

S__39075842.jpg
/145KB
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50420 / 親記事)  確率論 幾何分布
□投稿者/ みんく 一般人(3回)-(2020/07/26(Sun) 22:51:35)
    すみません、こちらもわからず苦戦しています。どなたか、解答と解説のほうしていただくと助かります。
828×267 => 250×80

E629A1DD-FE2F-4CA9-947A-EB2CD3BFB138.jpeg
/37KB
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50419 / 親記事)  大学数学 確率論
□投稿者/ みんく 一般人(1回)-(2020/07/26(Sun) 22:49:01)
    すみません。こちらの問題の解き方教えてください。途中式と答えもお願いします!
828×834 => 249×250

B628899E-6F01-4513-8328-DA99219BE401.jpeg
/92KB
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50418 / 親記事)  線形代数 行列
□投稿者/ とらほー 一般人(1回)-(2020/07/26(Sun) 22:02:46)
    行列の問題です
    途中式も含めて教えていただけると助かります
640×159 => 250×62

5C2CD0C9-1AED-48F9-B9CD-A75508605498.jpeg
/29KB
引用返信/返信 [メール受信/OFF]



■記事リスト / ▲上のスレッド
■50417 / 親記事)  弘前大学 2010年度 理系 過去問です。
□投稿者/ ゆゆ 一般人(1回)-(2020/07/22(Wed) 00:54:03)

    弘前大学 2010年度 理系 過去問です。
    答えと回答法を知りたいです。
    よろしくお願いします。

    問題
    座標平面において,原点を中心とする半径 3 の円を C,点 (0, -1) を中心とする半径 8 の円をD とする.C と D にはさまれた領域を E とする.0 <= k <= 3 とする.直線 l と原点との距離が一定値 k であるように l が動くとき,l と E の共通部分の長さの最小値を求めよ.
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■50425 / ResNo.1)  Re[1]: 弘前大学 2010年度 理系 過去問です。
□投稿者/ X 一般人(2回)-(2020/08/05(Wed) 19:24:55)
    2020/08/05(Wed) 19:28:27 編集(投稿者)

    lとCとの交点をP,Q、lとDとの交点をT,Uとし
    点(0,-1)を点Aとします。

    今、原点からlに下した垂線の足をHとすると
    条件から
    OH=k
    ∴△OHPにおいて三平方の定理により
    PH=√(OP^2-OH^2)=√(9-k^2) (A)
    △OPH≡△OQHに注意すると
    PQ=2PH=2√(9-k^2) (B)

    さて、条件から
    H(kcosθ,ksinθ)
    (0≦θ<2π (P))
    と置くことができるのでlの方程式は
    (x-kcosθ)cosθ+(y-ksinθ)sinθ=0
    整理をして
    xcosθ+ysinθ-k=0
    ∴点Aからlに下した垂線の足をIとすると
    点と直線との間の距離の公式により
    AI=|-sinθ-k|/√{(cosθ)^2+(sinθ)^2}
    =|sinθ+k|
    ∴(B)を求めるのと同様な過程により
    TU=2√{64-|sinθ+k|^2}
    =2√{64-(sinθ+k)^2} (C)
    (B)(C)より、lとEの共通部分の長さをLとすると
    L=TU-PQ=2√{64-(sinθ+k)^2}-2√(9-k^2)
    ∴(P)よりLはθ=π/2のときに最小値である
    2√{64-(1+k)^2}-2√(9-k^2)
    を取ります。
    以上から求める最小値は
    2√{64-(1+k)^2}-2√(9-k^2)
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター