数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal弘前大学 2010年度 理系 過去問です。(0) | Nomal無限和(2) | Nomal大学一年 線形代数(1) | Nomal大学で出された行列の課題がわかりません。(1) | Nomal 至急この問題を解説していただきたいです(0) | Nomal広義積分(0) | Nomal加速度の次元と速度の次元(0) | Nomal論理関数(0) | Nomal有理数(1) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal統計学 二項分布(0) | Nomal数列の一般項(2) | Nomal連立微分方程式(1) | Nomal全ての 整数解 等(0) | Nomal色々な方法 で(0) | Nomal初期値問題(1) | Nomal解析学(1) | Nomal統計学 確率密度関数 分布関数 確率(0) | Nomal対数尤度関数について!(0) | Nomal関数について(0) | Nomal解析学(2) | Nomal連立方程式(3) | Nomal論理を教えて下さい(12) | Nomal最小公倍数とはちがいますが。。(2) | Nomal消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学(2) | Nomal三次方程式(2) | Nomal線形代数(0) | Nomal極限(0) | Nomalボルスク・ウラムの定理の証明(0) | Nomal素数(0) | Nomalデルタ関数に関する問題(0) | Nomal正三角形と半円(2) | Nomal不等式(2) | Nomal漸化式(0) | Nomal統計学の質問(0) | Nomal行列のn乗(1) | Nomal確率変数(0) | Nomal確率における情報(17) | Nomal複数の点によって構成される多角形を相互の距離情報から類推する方法(6) | Nomal正射影再び(笑)(4) | Nomal正射影:正三角形→2等辺三角形(2) | Nomal球面上の2つの円の重なっている部分の面積(0) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal三角法(0) | Nomal大学数学です(0) | Nomal三角形(2) | Nomal数列の疑問(2) | Nomal素数積の評価〜ベルトラン・チェビシェフの定理(5) | Nomaleの極限(2) | Nomal積分(0) | Nomal四角形の極限(2) | Nomalcosの積分の評価(0) | Nomal動点の確率(2) | Nomalベルトラン・チェビシェフの定理について。(2) | Nomal極大と変曲(4) | Nomalsinの不等式(4) | Nomalピタゴラスの定理の簡単な証明(3) | UpDateフェルマーの最終定理の簡単な証明9(25) | Nomal複素積分の絶対値の評価(2) | Nomalリーマン積分可能性(3) | Nomalデデキントの切断による実数の構成(0) | Nomalベルトラン・チェビチェフの定理について。(0) | Nomalガウスの発散定理(0) | Nomal数列について。(0) | Nomal(1-x)^(-2)の展開式(2) | Nomal線形代数(0) | Nomal高校の範囲での証明(2) | Nomal京大特色(1) | Nomalこの表の見方を教えてください。(0) | Nomalヒルベルト空間(0) | Nomal$D_n$加群のフーリエ変換と関数のフーリエ変換との関係について(0) | Nomal群の問題(5) | Nomal合同式の計算(2) | Nomal統計/区画幅について(3) | Nomalプログラミング言語BASIC言語について。(14) | Nomal2変数関数の極値条件(2) | Nomal素数生成法について(0) | Nomal合同式の計算(4) | Nomal縦曲線について(0) | Nomal銃曲線における計画高ついて(0) | Nomal測量学について(0) | Nomal訂正です(1) | Nomal対数の取り方、シグモイド、ロジスティック関数(0) | Nomal緩和曲線の開始位置と終了地点および途中の高さxについて(0) | Nomalf'(x) の増減の判定方法(3) | Nomal三角形と内接円について改(1) | Nomal三角形と内接円について。(1) | Nomal増減表の作り方(6) | Nomal三葉曲線の長さについて(2) | Nomal4次関数(3) | Nomal約数を mod 13 で見る(1) | Nomal自作問題(3) | Nomalsupreme 偽物(0) |



■記事リスト / ▼下のスレッド
■49958 / 親記事)  対偶について
□投稿者/ あすなろ 一般人(1回)-(2019/08/22(Thu) 21:40:54)
     某掲示板に投稿されていた問題です。そこで一応解決されているのですが、対偶についてよくわからないことがあるので教えてください。

    (2)は
     ある二次元正方行列 X、Y に対し

      XA≠[O]∧AY≠[O]∧XAY = [O] ⇒ ad - bc≠0 ・・・・・@

    を証明せよということになると思うのですが、@の対偶は

      ad - bc = 0 ⇒ XA=[O] ∨ AY=[O] ∨ XAY≠[O]・・・・・A

    となり、結論の3つの命題のうちどれか1つ成り立てばAは真になるので、@で
      XA≠[O]∧AY≠[O]
    と仮定されていることを考えれば結局

      ad - bc = 0 ⇒ XAY≠[O]・・・・・A’

    を証明できればいいのでしょうか?

1000×472 => 250×118

taigu.png
/55KB
引用返信/返信 [メール受信/OFF]

▽[全レス8件(ResNo.4-8 表示)]
■49967 / ResNo.4)  Re[4]: 対偶について
□投稿者/ あすなろ 一般人(3回)-(2019/08/22(Thu) 23:07:59)
    > XA≠[O]とAY≠[O]が「仮定」で
    > XAY = [O]が「仮定」でない理由は何ですか?

     ああ! なるほど。ということは最初に戻って

      ad - bc = 0 ⇒ XA=[O] ∨ AY=[O] ∨ XAY≠[O]・・・・・A


      ad - bc = 0 ⇒ XA=[O]・・・・・@
      ad - bc = 0 ⇒ XA=[O]・・・・・A
      ad - bc = 0 ⇒ XAY≠[O]・・・・・B
    のどれかが成り立てば真になる。
    B)の場合
    (以下 t[p q] や t[α β] は列ベクトルを表します)

     (1)の結果より p、q、r、s は 0 でない実数でいいので
      XA = Xt[p q][r s] = t[α β][r s]≠[O]
      AY = t[p q][r s]Y = t[p q][γ δ]≠[O]
    となる実数α、β、γ、δが存在する。
      t[α β] = t[0 0] ⇒ XA = [O]
    なのでαかβのどちらか一方は0ではない。
       [γ δ] = [0 0] ⇒ AY = [O]
    なのでγかδのどちらか一方は0ではない。

     したがって
      XAY = Xt[p q][r s]Y = t[α β][γ δ]≠[O].
     よってAが証明された。
     こんな感じでいいのでしょうか?

     @、Aと(#1)を直接証明する方法はただいま格闘中ですが、@とAはそもそも成り立つのでしょうか?

引用返信/返信 [メール受信/OFF]
■49968 / ResNo.5)  Re[5]: 対偶について
□投稿者/ らすかる 一般人(10回)-(2019/08/22(Thu) 23:21:20)
    > (1)の結果より p、q、r、s は 0 でない実数でいいので

    どこから「0でない」が出てくるのですか?

引用返信/返信 [メール受信/OFF]
■49969 / ResNo.6)  Re[6]: 対偶について
□投稿者/ あすなろ 一般人(4回)-(2019/08/22(Thu) 23:39:20)
      det(t[p q][r s]) = 0
    だから p、q、r、s は 任意の実数でいいのかしらん?

引用返信/返信 [メール受信/OFF]
■49971 / ResNo.7)  Re[7]: 対偶について
□投稿者/ らすかる 一般人(11回)-(2019/08/23(Fri) 00:05:42)
    (1)では0でないとは言っていませんね。
    例えばA=Oのときp=q=r=s=0なども含んでいますし、
    p,q,r,sがどんな実数でもdet(t[p q][r s])=0になりますので
    p,q,r,sは任意の実数をとれますね。

引用返信/返信 [メール受信/OFF]
■49972 / ResNo.8)  Re[8]: 対偶について
□投稿者/ あすなろ 一般人(5回)-(2019/08/23(Fri) 00:20:06)
     深夜までおつきあいくださりありがとうございました。また、わからないことがあったらよろしくお願いいたします。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-8]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■49953 / 親記事)  sinの関係
□投稿者/ アマンダ 一般人(1回)-(2019/08/22(Thu) 18:23:31)
    △ABCに対して
    sin((π-A)/4) * sin((π-B)/4) * sin((π-C)/4) ≧ sin(A/2) * sin(B/2) * sin(C/2)
    が成り立つことの証明を教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■49956 / ResNo.1)  Re[1]: sinの関係
□投稿者/ らすかる 一般人(4回)-(2019/08/22(Thu) 19:33:44)
    0<x<π,0<y<πに対して
    {sin(x-y)}^2≧0 (-π<x-y<πなので等号成立条件はx=y)
    (sinxcosy-cosxsiny)^2≧0
    (sinxcosy)^2+(cosxsiny)^2-2sinxcosxsinycosy≧0
    (sinxcosy)^2+(cosxsiny)^2+2sinxcosxsinycosy≧4sinxcosxsinycosy
    (sinxcosy+cosxsiny)^2≧4sinxcosxsinycosy
    ∴{sin(x+y)}^2≧(sin2x)(sin2y)
    (x,y)=(A/4,B/4)とすると {sin((A+B)/4)}^2≧sin(A/2)sin(B/2)
    (x,y)=(B/4,C/4)とすると {sin((B+C)/4)}^2≧sin(B/2)sin(C/2)
    (x,y)=(C/4,A/4)とすると {sin((C+A)/4)}^2≧sin(C/2)sin(A/2)
    3式とも両辺正なので辺々掛けて
    {sin((A+B)/4)sin((B+C)/4)sin((C+A)/4)}^2≧{sin(A/2)sin(B/2)sin(C/2)}^2
    sinの値は全て正なので
    sin((A+B)/4)sin((B+C)/4)sin((C+A)/4)≧sin(A/2)sin(B/2)sin(C/2)
    A+B+C=πなので
    sin((π-A)/4)sin((π-B)/4)sin((π-C)/4)≧sin(A/2)sin(B/2)sin(C/2)
    なお、等号成立条件はA/4=B/4=C/4すなわち△ABCが正三角形の場合。
    (証明終)

引用返信/返信 [メール受信/OFF]
■49960 / ResNo.2)  Re[2]: sinの関係
□投稿者/ アマンダ 一般人(2回)-(2019/08/22(Thu) 21:48:17)
    こりゃエレガントですね。
    ありがとうございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■49952 / 親記事)  偶数と奇数
□投稿者/ 奇遇なことで 一般人(1回)-(2019/08/22(Thu) 18:09:56)
    整数a,b,c,d,p,q,r,sが
    br+cqは奇数、
    ap+bs+bp+dqは偶数、
    ar+cs+cp+drは偶数、
    という3つの条件をみたすとき、
    aとpの偶奇は等しい、かつ
    dとsの偶奇は等しい、と言えますか?
引用返信/返信 [メール受信/OFF]

▽[全レス8件(ResNo.4-8 表示)]
■49959 / ResNo.4)  Re[4]: 偶数と奇数
□投稿者/ 奇遇なことで 一般人(3回)-(2019/08/22(Thu) 21:45:47)
    すみません、これならどうでしょうか?

    整数a,b,c,d,p,q,r,sが
    br+cqは奇数、
    aq+bs+bp+dqは偶数、
    ar+cs+cp+drは偶数、
    という3つの条件をみたすとき、
    aとpの偶奇は等しい、かつ
    dとsの偶奇は等しい、と言えますか?
引用返信/返信 [メール受信/OFF]
■49963 / ResNo.5)  Re[5]: 偶数と奇数
□投稿者/ らすかる 一般人(7回)-(2019/08/22(Thu) 22:23:55)
    2019/08/22(Thu) 22:41:37 編集(投稿者)

    言えません。
    最初の質問のapをaqに変えただけですよね?
    最初の質問の回答でp=q=1なのですから、
    pをqに変えても全く同じ結果です。

    # 少しずつ質問を変えていますが、何をしたいのですか?
    # うろ覚えの命題を思い出したい、とかですか?
引用返信/返信 [メール受信/OFF]
■49965 / ResNo.6)  Re[6]: 偶数と奇数
□投稿者/ 奇遇なことで 一般人(4回)-(2019/08/22(Thu) 22:46:25)
    すみません、これで最後にします。
    最初の質問のapをaqに変えたら、
    aとdの偶奇は等しい、かつ
    pとsの偶奇は等しい、とは言えますか?

    #数学初心者なので本に書いてあることが全く理解できないため
    #n=2の場合でどうなっているのか知りたいのです。
引用返信/返信 [メール受信/OFF]
■49966 / ResNo.7)  Re[7]: 偶数と奇数
□投稿者/ らすかる 一般人(9回)-(2019/08/22(Thu) 22:56:31)
    それなら成り立ちます。
引用返信/返信 [メール受信/OFF]
■49970 / ResNo.8)  Re[8]: 偶数と奇数
□投稿者/ 奇遇なことで 一般人(5回)-(2019/08/23(Fri) 00:04:13)
    ありがとうございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-8]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■49947 / 親記事)  2^(1/3)とωと√3
□投稿者/ おーうぇん 一般人(1回)-(2019/08/21(Wed) 19:39:45)
    ω=(-1+i√3)/2とします。ω^3=1です。
    以下の条件をみたす有理数a[1]〜a[6]、b[1]〜b[6]は存在しますか?
    √3={a[1]+a[2]2^(1/3)+a[3]4^(1/3)+a[4]ω+a[5]2^(1/3)ω+a[6]4^(1/3)ω}/{b[1]+b[2]2^(1/3)+b[3]4^(1/3)+b[4]ω+b[5]2^(1/3)ω+b[6]4^(1/3)ω}
引用返信/返信 [メール受信/OFF]

▽[全レス4件(ResNo.1-4 表示)]
■49948 / ResNo.1)  Re[1]: 2^(1/3)とωと√3
□投稿者/ らすかる 一般人(1回)-(2019/08/21(Wed) 23:24:08)
    存在しません。
引用返信/返信 [メール受信/OFF]
■49949 / ResNo.2)  Re[2]: 2^(1/3)とωと√3
□投稿者/ おーうぇん 一般人(2回)-(2019/08/21(Wed) 23:40:18)
    なぜでしょうか?
引用返信/返信 [メール受信/OFF]
■49950 / ResNo.3)  Re[3]: 2^(1/3)とωと√3
□投稿者/ らすかる 一般人(2回)-(2019/08/21(Wed) 23:41:54)
    2019/08/21(Wed) 23:50:51 編集(投稿者)

    条件を満たす有理数が存在した場合、a[1]〜a[6],b[1]〜b[6]全ての分母の
    最小公倍数をa[1]〜a[6],b[1]〜b[6]全てに掛けると
    係数が全て整数になるので、条件を満たす「互いに素な整数」
    a[1]〜a[6],b[1]〜b[6]が存在しないことを言えば十分。
    よってそのように仮定する。
    分母を払って
    a[1]+a[2]2^(1/3)+a[3]4^(1/3)+a[4]ω+a[5]2^(1/3)ω+a[6]4^(1/3)ω
    ={b[1]+b[2]2^(1/3)+b[3]4^(1/3)+b[4]ω+b[5]2^(1/3)ω+b[6]4^(1/3)ω}√3
    式が長いのでa[1]〜a[6]をa,b,c,d,e,f、b[1]〜b[6]をg,h,j,k,l,m、
    2^(1/3)をtに置き換えると(すなわち4^(1/3)=t^2)、
    a+bt+ct^2+ωd+ωet+ωft^2=(g+ht+jt^2+ωk+ωlt+ωmt^2)√3
    ωが掛かっている項とそうでない項を分けて
    a+bt+ct^2-(g+ht+jt^2)√3=ω{(k+lt+mt^2)√3-(d+et+ft^2)}
    右辺だけωが掛かっているため(左辺)=(右辺)=0でなければならない。すなわち
    a+bt+ct^2-(g+ht+jt^2)√3=0 … (1)
    かつ
    (k+lt+mt^2)√3-(d+et+ft^2)=0 … (2)
    (1)から
    a+bt+ct^2=(g+ht+jt^2)√3
    t^3=2であることに注意して両辺を2乗すると
    (a^2+4bc)+2(c^2+ab)t+(b^2+2ac)t^2=3{(g^2+4hj)+2(j^2+gh)t+(h^2+2gj)t^2}
    tについて整理して
    {a^2+4bc-3(g^2+4hj)}+2{c^2+ab-3(j^2+gh)}t+{b^2+2ac-3(h^2+2gj)}t^2=0
    補題から
    a^2+4bc-3(g^2+4hj)=0 … (3)
    c^2+ab-3(j^2+gh)=0 … (4)
    b^2+2ac-3(h^2+2gj)=0 … (5)
    (3)をmod4で考えるとa,gは偶数でなければならない。
    a,gが偶数なので、(5)をmod4で考えるとb,hも偶数でなければならない。
    a,b,g,hが偶数なので、(4)をmod4で考えるとc,jも偶数でなければならない。
    従ってa,b,c,g,h,jは全て偶数。
    全く同様に、(2)からd,e,f,k,l,mも全て偶数となり、仮定と矛盾。

    補題
    p,q,rが有理数でp+qt+rt^2=0…(a)(t=2^(1/3))のときp=q=r=0
    補題の証明
    pqr≠0と仮定して(a)をtの二次方程式とみてtについて解くと
    t={-q±√(q^2-4pr)}/(2r)
    となるが、左辺は三次の無理数、右辺は虚数または二次の無理数または有理数となり矛盾。
    従ってpqr=0なので、(簡単なので途中省略)p=q=r=0。

引用返信/返信 [メール受信/OFF]
■49951 / ResNo.4)  Re[4]: 2^(1/3)とωと√3
□投稿者/ おーうぇん 一般人(3回)-(2019/08/22(Thu) 06:52:32)
    じっくりと読ませていただきました。
    要領よく計算するだけでなく4で割った余りを見るなど大変面白く勉強になりました。
    有り難うございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-4]



■記事リスト / ▲上のスレッド
■49938 / 親記事)   supreme コート
□投稿者/ gdags 一般人(1回)-(2019/08/14(Wed) 11:43:38)
    本物と見分けがつかない本物と見分けがつかないwww.ochrance.cz/en/reports/case-law/

引用返信/返信 [メール受信/OFF]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター