数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal線形代数(0) | Nomal確率論 幾何分布(0) | Nomal大学数学 確率論(0) | Nomal線形代数 行列(0) | Nomal弘前大学 2010年度 理系 過去問です。(0) | Nomal無限和(2) | Nomal大学一年 線形代数(1) | Nomal大学で出された行列の課題がわかりません。(1) | Nomal 至急この問題を解説していただきたいです(0) | Nomal広義積分(0) | Nomal加速度の次元と速度の次元(0) | Nomal論理関数(0) | Nomal有理数(1) | Nomal正規分布(0) | Nomal問題を解いた物を送ってください(0) | Nomal陰関数の問題(0) | Nomal最小費用流問題(0) | Nomalこの問題分かりません(0) | Nomal統計学 二項分布(0) | Nomal数列の一般項(2) | Nomal連立微分方程式(1) | Nomal全ての 整数解 等(0) | Nomal色々な方法 で(0) | Nomal初期値問題(1) | Nomal解析学(1) | Nomal統計学 確率密度関数 分布関数 確率(0) | Nomal対数尤度関数について!(0) | Nomal関数について(0) | Nomal解析学(2) | Nomal連立方程式(3) | Nomal論理を教えて下さい(12) | Nomal最小公倍数とはちがいますが。。(2) | Nomal消火栓からの流量を何立米/sにしたら良いのでしようか?水理学、流体力学(2) | Nomal三次方程式(2) | Nomal線形代数(0) | Nomal極限(0) | Nomalボルスク・ウラムの定理の証明(0) | Nomal素数(0) | Nomalデルタ関数に関する問題(0) | Nomal正三角形と半円(2) | Nomal不等式(2) | Nomal漸化式(0) | Nomal統計学の質問(0) | Nomal行列のn乗(1) | Nomal確率変数(0) | Nomal確率における情報(17) | Nomal複数の点によって構成される多角形を相互の距離情報から類推する方法(6) | Nomal正射影再び(笑)(4) | Nomal正射影:正三角形→2等辺三角形(2) | Nomal球面上の2つの円の重なっている部分の面積(0) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal三角法(0) | Nomal大学数学です(0) | Nomal三角形(2) | Nomal数列の疑問(2) | Nomal素数積の評価〜ベルトラン・チェビシェフの定理(5) | Nomaleの極限(2) | Nomal積分(0) | Nomal四角形の極限(2) | Nomalcosの積分の評価(0) | Nomal動点の確率(2) | Nomalベルトラン・チェビシェフの定理について。(2) | Nomal極大と変曲(4) | Nomalsinの不等式(4) | Nomalピタゴラスの定理の簡単な証明(3) | UpDateフェルマーの最終定理の簡単な証明9(25) | Nomal複素積分の絶対値の評価(2) | Nomalリーマン積分可能性(3) | Nomalデデキントの切断による実数の構成(0) | Nomalベルトラン・チェビチェフの定理について。(0) | Nomalガウスの発散定理(0) | Nomal数列について。(0) | Nomal(1-x)^(-2)の展開式(2) | Nomal線形代数(0) | Nomal高校の範囲での証明(2) | Nomal京大特色(1) | Nomalこの表の見方を教えてください。(0) | Nomalヒルベルト空間(0) | Nomal$D_n$加群のフーリエ変換と関数のフーリエ変換との関係について(0) | Nomal群の問題(5) | Nomal合同式の計算(2) | Nomal統計/区画幅について(3) | Nomalプログラミング言語BASIC言語について。(14) | Nomal2変数関数の極値条件(2) | Nomal素数生成法について(0) | Nomal合同式の計算(4) | Nomal縦曲線について(0) | Nomal銃曲線における計画高ついて(0) | Nomal測量学について(0) | Nomal訂正です(1) | Nomal対数の取り方、シグモイド、ロジスティック関数(0) | Nomal緩和曲線の開始位置と終了地点および途中の高さxについて(0) | Nomalf'(x) の増減の判定方法(3) | Nomal三角形と内接円について改(1) | Nomal三角形と内接円について。(1) | Nomal増減表の作り方(6) | Nomal三葉曲線の長さについて(2) | Nomal4次関数(3) | Nomal約数を mod 13 で見る(1) | Nomal自作問題(3) | Nomalsupreme 偽物(0) |



■記事リスト / ▼下のスレッド
■49776 / 親記事)  フェルマーの最終定理の簡単な証明7
□投稿者/ 日高 大御所(286回)-(2019/07/21(Sun) 06:55:06)
    7/21どなたかご指摘いただけないでしょうか。
1240×1754 => 177×250

1563659706.png
/53KB
引用返信/返信 [メール受信/OFF]

▽[全レス101件(ResNo.97-101 表示)]
■49890 / ResNo.97)  Re[38]: フェルマーの最終定理の簡単な証明7
□投稿者/ 月 一般人(12回)-(2019/08/07(Wed) 21:38:03)
    > すみません。理解できないので、詳しく教えていただけないでしょうか。

    p = 3 のとき,
    x^3 + y^3 = (x + 3^(1/2))^3 から
    x^3 + y^3 = x^3 + 3*3^(1/2)x^2 + 3*3x + 3*3^(1/2),
    (3*3x - y^3) + (x^2 + 1)3*3^(1/2) = 0
    よって 3*3x = y^3, x^2 = -1 です。
引用返信/返信 [メール受信/ON]
■49891 / ResNo.98)  Re[39]: フェルマーの最終定理の簡単な証明7
□投稿者/ 日高 大御所(340回)-(2019/08/08(Thu) 07:53:59)
    No49890に返信(月さんの記事)
    >>すみません。理解できないので、詳しく教えていただけないでしょうか。
    >
    > p = 3 のとき,
    > x^3 + y^3 = (x + 3^(1/2))^3 から
    > x^3 + y^3 = x^3 + 3*3^(1/2)x^2 + 3*3x + 3*3^(1/2),
    > (3*3x - y^3) + (x^2 + 1)3*3^(1/2) = 0
    > よって 3*3x = y^3, x^2 = -1 です。

    (3*3x - y^3)=0, (x^2 + 1)=0とすると、x^2 = -1となりますが、
    (3*3x - y^3)=-10, (x^2 + 1)3*3^(1/2)=+10の場合も有ります。
引用返信/返信 [メール受信/OFF]
■49892 / ResNo.99)  Re[40]: フェルマーの最終定理の簡単な証明7
□投稿者/ 悶える亜素粉 一般人(28回)-(2019/08/08(Thu) 10:01:27)
     この屑のような話題はこのスレで打ち止めにすること。

     絶対に次スレを立てないこと!!!!!!!!!!!
引用返信/返信 [メール受信/OFF]
■49893 / ResNo.100)  Re[41]: フェルマーの最終定理の簡単な証明7
□投稿者/ 日高 大御所(341回)-(2019/08/08(Thu) 10:48:46)
    No49892に返信(悶える亜素粉さんの記事)
    >  この屑のような話題はこのスレで打ち止めにすること。
    >
    >  絶対に次スレを立てないこと!!!!!!!!!!!

    どの部分が「屑のような話題」かを、教えていただけないでしょうか。
引用返信/返信 [メール受信/OFF]
■49894 / ResNo.101)  Re[1]: フェルマーの最終定理の簡単な証明7
□投稿者/ 呆れ顔 一般人(6回)-(2019/08/09(Fri) 21:44:35)
    2019/08/09(Fri) 21:54:19 編集(投稿者)

    もはや答える必要はない.
    このスレ主には中学・高校程度の最低限の自然な数理的な推論能力が備わっていない.
    「教える」という行為はコーチングとティーチングに大別されるが,どちらも無駄になる.

    今までの無駄なやり取りを見ればわかるように,無駄な質問を繰り返すだけのレス数乞食だ.
    こういう輩を放置すると,コミュニティの快適性が損なわれるだけだから早い段階で無視するべき.

    損益分岐の判断基準は,
    1:「質問内容にふさわしいだけの知識と論証能力のどちらも欠落している」←コーチング不能
    2:「足りていない知識とスキルを説明しても理解する様子もなく,自分で調べる努力すらしない」←ティーチング不能
    3:「論理的根拠もなく,正当性を示すだけの能力もないのに自説には信念がある」←妄想

    これらの条件を満たしているなら他の質問者への回答にリソースを回すほうが建設的.
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-9] [10-19] [20-29] [30-39] [40-49] [50-59] [60-69] [70-79] [80-89] [90-99] [100-101]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■49736 / 親記事)  グッチンコピー
□投稿者/ 弊店のグッチコピー等 一般人(1回)-(2019/07/19(Fri) 14:41:30)
http://www.secbrand.jp/brandlist-z-548.html
    グッチンコピー 人気ランキング1位です。弊店のグッチコピー等のは送料手数料で、品質2年保証です。お問合せ:secbrandjp@gmail.com 担当者:山本俊介
    www.secbrand.jp/
    www.secbrand.jp/brandlist-z-548.html
引用返信/返信 [メール受信/OFF]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■49713 / 親記事)  6次方程式
□投稿者/ natsu 一般人(1回)-(2019/07/18(Thu) 13:00:42)

    z6乗+1=0

    わからないです、よろしくお願いいたします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■49718 / ResNo.1)  Re[1]: 6次方程式
□投稿者/ らすかる 一般人(29回)-(2019/07/18(Thu) 15:49:31)
    z^6+1=0
    (z^2+1)(z^4-z^2+1)=0
    z^2+1=0 → z=±i
    z^4-z^2+1=0
    z^4+2z^2+1-3z^2=0
    (z^2+1)^2-{(√3)z}^2=0
    {z^2+(√3)z+1}{z^2-(√3)z+1}=0
    z^2+(√3)z+1=0 → z=(-√3±i)/2
    z^2-(√3)z+1=0 → z=(√3±i)/2
    従って答えは
    z=±i,(±√3±i)/2 (後者は複号任意)

引用返信/返信 [メール受信/OFF]
■49723 / ResNo.2)  Re[2]: 6次方程式
□投稿者/ natsu 一般人(2回)-(2019/07/18(Thu) 20:27:07)
    ありがとうございます!!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■49699 / 親記事)  ベクトル解析 証明
□投稿者/ ほの 一般人(1回)-(2019/07/17(Wed) 16:46:38)
    →aをベクトル関数、→rを位置ベクトルとするとき、次の等式を証明せよ。ただし、積分領域Vは任意の体積領域で、Sはその表面である。

    ∫(→r・rot→a)dV= ∫(→a×→r)・d→S


    分かる方いらっしゃいましたら、教えていただきたいです。よろしくお願いします。
引用返信/返信 [メール受信/OFF]



■記事リスト / ▲上のスレッド
■49683 / 親記事)  位相数学、位相空間
□投稿者/ ゆう 一般人(1回)-(2019/07/16(Tue) 12:21:55)
    位相数学についての質問です。
    現在位相数学を学んでいる大学3回生です。
    授業内で次のような問題を出題されたのですが、回答の糸口もつかめません。
    何かヒントでも大丈夫ですのでお知恵をお貸しいただけるとありがた
    いです


    問題:平面 R2, 実数直線 R1 には通常の距離からユークリッド位相を入れ る. X3 をユークリッド平面 R2 上の三角形の合同類全体とする. すなわち 三角形全体を考え, 合同なものは同じとみなした集合が X3 である. さらに X3 の要素である各三角形にその三角形の面積を対応させる関数を
    Area : X3 → R とおく.
    1. X3 はどのような集合か調べよ.
    2. 離散位相を入れると Area は連続かどうか, 密着位相を入れると Area
    は連続かどうか, をそれぞれ調べよ.
    3. 離散位相, 密着位相とは異なる X3 の位相で, Area が連続となるもの
    を一つ具体的にあげ, 実際に位相になっていること, Area が連続であ
    ることを示せ.
    4. 面積が 1 となる三角形の全体, すなわち Area による 1 の逆像
    Area−1(1) ⊂ X3 に前問で入れた X3 の位相の相対位相を入れる. Area−1(1) はどのような空間になるか調べよ.
引用返信/返信 [メール受信/OFF]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター