数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomal円錐台の断面積(9) | Nomal相関係数と共分散(1) | Nomallogの計算(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal極限(3) | Nomal確率の問題が分かりません 助けてください(1) | Nomalメビウス変換(0) | Nomal複素数 写像 (0) | Nomal複素数平面(0) | Nomal複素数平面(1) | Nomal複素数 証明(難)(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(0) | Nomal解答を教えてください(1) | Nomal複素数(1) | Nomal囲まれた面積(2) | Nomal極限の問題 2改(1) | Nomal微分可能な点を求める問題(1) | Nomal極限の問題2(1) | Nomal極限の問題(1) | Nomal複素数(2) | Nomal三角形(1) | Nomal確率(2) | Nomal三角数の和(0) | Nomalコラッツ予想(0) | Nomal低レベルな問題ですいません(2) | Nomal中学数学によるフェルマーの最終定理の証明(1) | Nomalガウス整数の平方和(8) | Nomal環でしょうか(2) | Nomal三角関数の式(0) | Nomal大学数学 位相数学(1) | Nomal確率(1) | Nomal1/{z^2(z-1)^2} z=0でローラン展開(1) | Nomal速度(2) | Nomali^iについて(2) | Nomal複素数平面(6) | Nomal(x+1)^n-x^n(1) | Nomal定積分(1) | Nomal円に内接する四角形(2) | Nomal多項式の整除(1) | Nomal代数学(1) | Nomal不等式(4) | Nomal大学数学(0) | Nomal極限(0) | Nomal有限体(0) | Nomal多項式(1) | Nomal場合の数(2) | Nomal同値関係が分かりません(0) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal質問(2) | Nomal不等式(2) | Nomal周期関数(1) | Nomal確立 基礎問題(2) | NomalCELINE コピー(0) | Nomalこれだけで求められるの?(3) | Nomal平方数(1) | Nomal係数(4) | Nomal不等式(2) | Nomal整数問題(1) | Nomal二次方程式の定数を求める(3) | Nomal正十二面体(2) | Nomal期待値(2) | Nomal複素数と図形(1) | Nomal大学の積分の問題です(0) | Nomal整数の例(4) | Nomal位相数学(0) | Nomalコラッツ予想について(0) | Nomalコラッツ予想について(0) | Nomal線形代数(0) | Nomalkkk(0) | Nomalお金がかからない(0) | Nomal大学数学難しすぎて分かりません。お願いします(0) | Nomal大学数学難しすぎて分かりません。。(0) | Nomal関数方程式(2) | Nomalコラッツ予想(0) | Nomalべズーの定理(0) | Nomal数学はゲーム(3) | Nomal解析学(0) | Nomal整数問題(1) | Nomal位相数学(1) | Nomal大学数学 位相数学(2) | Nomal数検準2級は難しい(0) | Nomal条件付き最大値問題について(0) | Nomal数列(2) | Nomal二項係数2nCn(1) | Nomal三角関数(0) | Nomalガウス記号(0) | Nomal確率(0) | Nomal式の値(2) | Nomal式の値(4) | Nomal外接円と内接円(1) | Nomal最小値(2) | Nomal最小値(2) | Nomal高校受験の問題です(4) | Nomal解析学(1) | Nomal確率分布(0) | Nomal整数問題(2) | Nomal関数の合成(0) | Nomal素数(2) |



■記事リスト / ▼下のスレッド
■51959 / 親記事)  確率
□投稿者/ ピザ 一般人(1回)-(2022/10/05(Wed) 11:11:08)
    箱の中に1から8の整数が書かれた8個のボールがあり、
    2個取り出して、2個の玉に書かれた|整数の差|が1であればその2個は捨て、
    |整数の差|が1より大きければ2個とも箱に戻す、という行動を繰り返す。
    n回行動をし終えた時点で箱が空になる確率を求めよ。

    この問題が解けないので教えて下さい。
引用返信/返信 [メール受信/OFF]

▽[全レス4件(ResNo.1-4 表示)]
■51978 / ResNo.1)  Re[1]: 確率
□投稿者/ X 一般人(1回)-(2022/10/12(Wed) 18:54:03)
    求める確率をP[n]とします。

    ある1回の行動の前後で箱の中の玉の個数が
    k[個](k=2,4,6,8)からk-2[個]になる確率をR[k,k-2]とすると
    R[8,6]=4/(8C2)=1/7
    R[6,4]=3/(6C2)=1/5
    R[4,2]=2/(4C2)=1/3
    R[2,0]=1
    ∴箱の中の玉の個数が
    l回目の行動の前後で8個から6個に
    l+m回目の行動の前後で6個から4個に
    なり、
    n回目(n≧2)の行動終了まで4個のまま
    である確率をQ[n,l,m]とすると
    Q[n,l,m]={R[8,6](1-R[8,6])^(l-1)}{R[6,4](1-R[6,4])^(m-1)}{1-R[4,2]}^(n-l-m)
    ={(1/7)(6/7)^(l-1)}{(1/5)(4/5)^(m-1)}(2/3)^(n-l-m)
    ={(1/7)(6/7)^(l-1)}{(1/5)(4/5)^(m-1)}{(2/3)^n}(3/2)^(l+m)
    ={(1/7)(9/7)^(l-1)}{(1/5)(6/5)^(m-1)}{(2/3)^n}(3/2)^2
    =(9/140){(9/7)^(l-1)}{(6/5)^(m-1)}(2/3)^n

    よってn回目の行動後に箱の中に4個の玉がある確率をq[n](n≧2)とすると
    q[n]=Σ[l=1〜n-1]Σ[m=1〜n-l]Q[n,l,m]
    =Σ[l=1〜n-1]Σ[m=1〜n-l](9/140){(9/7)^(l-1)}{(6/5)^(m-1)}(2/3)^n
    =(9/140){(2/3)^n}{Σ[l=1〜n-1]{(9/7)^(l-1)}}Σ[m=1〜n-l](6/5)^(m-1)
    =(9/28){(2/3)^n}Σ[l=1〜n-1]{(9/7)^(l-1)}{(6/5)^(n-l)-1}
    =(9/28){(2/3)^n}Σ[l=1〜n-1]{(5/6){(6/5)^n}{(5/6)^(l-1)}(9/7)^(l-1)-(9/7)^(l-1)}
    =(9/28){(2/3)^n}{Σ[l=1〜n-1]{(5/6){(6/5)^n}(15/14)^(l-1)-(9/7)^(l-1)}
    =(9/28){(2/3)^n}{(35/3){(6/5)^n}{(15/14)^(n-1)-1}-(7/2){(9/7)^(n-1)-1}}
    =(9/28){(2/3)^n}{(35/3){(6/5)(9/7)^(n-1)-(6/5)^n}-(7/2)(9/7)^(n-1)+7/2}
    =(3/14){(2/3)^(n-1)}{14・(9/7)^(n-1)-14・(6/5)^(n-1)-(7/2)(9/7)^(n-1)+7/2}
    =(3/2){(2/3)^(n-1)}{2・(9/7)^(n-1)-2・(6/5)^(n-1)-(1/2)(9/7)^(n-1)+1/2}
    =(3/2){(2/3)^(n-1)}{(3/2)(9/7)^(n-1)-2・(6/5)^(n-1)+1/2}
    ={(2/3)^(n-1)}{(9/4)(9/7)^(n-1)-3・(6/5)^(n-1)+3/4}
    =(9/4)(6/7)^(n-1)-3・(4/5)^(n-1)+(3/4)(2/3)^(n-1)


    (i)n≧4のとき
    P[n]=R[4,2]q[n-2]
    =(3/4)(6/7)^(n-3)-(4/5)^(n-3)+(1/4)(2/3)^(n-3)
    (ii)n=1,2,3のとき
    箱を空にするには最低4回問題の行動をする必要があるので
    P[n]=0
    (もっと簡単な方法があるかもしれません。)
引用返信/返信 [メール受信/OFF]
■51982 / ResNo.2)  Re[2]: 確率
□投稿者/ ピザ 一般人(2回)-(2022/10/14(Fri) 10:36:45)
    有り難うございます。
    感激です。
引用返信/返信 [メール受信/OFF]
■51984 / ResNo.3)  Re[2]: 確率
□投稿者/ nacky 一般人(1回)-(2022/10/18(Tue) 11:26:05)
    No51978に返信(Xさんの記事)
    > 求める確率をP[n]とします。
    >
    > ある1回の行動の前後で箱の中の玉の個数が
    > k[個](k=2,4,6,8)からk-2[個]になる確率をR[k,k-2]とすると
    > R[8,6]=4/(8C2)=1/7
    > R[6,4]=3/(6C2)=1/5
    > R[4,2]=2/(4C2)=1/3
    > R[2,0]=1
    > ∴箱の中の玉の個数が
    > l回目の行動の前後で8個から6個に
    > l+m回目の行動の前後で6個から4個に
    > なり、
    > n回目(n≧2)の行動終了まで4個のまま
    > である確率をQ[n,l,m]とすると
    > Q[n,l,m]={R[8,6](1-R[8,6])^(l-1)}{R[6,4](1-R[6,4])^(m-1)}{1-R[4,2]}^(n-l-m)
    > ={(1/7)(6/7)^(l-1)}{(1/5)(4/5)^(m-1)}(2/3)^(n-l-m)
    > ={(1/7)(6/7)^(l-1)}{(1/5)(4/5)^(m-1)}{(2/3)^n}(3/2)^(l+m)
    > ={(1/7)(9/7)^(l-1)}{(1/5)(6/5)^(m-1)}{(2/3)^n}(3/2)^2
    > =(9/140){(9/7)^(l-1)}{(6/5)^(m-1)}(2/3)^n
    >
    > よってn回目の行動後に箱の中に4個の玉がある確率をq[n](n≧2)とすると
    > q[n]=Σ[l=1〜n-1]Σ[m=1〜n-l]Q[n,l,m]
    > =Σ[l=1〜n-1]Σ[m=1〜n-l](9/140){(9/7)^(l-1)}{(6/5)^(m-1)}(2/3)^n
    > =(9/140){(2/3)^n}{Σ[l=1〜n-1]{(9/7)^(l-1)}}Σ[m=1〜n-l](6/5)^(m-1)
    > =(9/28){(2/3)^n}Σ[l=1〜n-1]{(9/7)^(l-1)}{(6/5)^(n-l)-1}
    > =(9/28){(2/3)^n}Σ[l=1〜n-1]{(5/6){(6/5)^n}{(5/6)^(l-1)}(9/7)^(l-1)-(9/7)^(l-1)}
    > =(9/28){(2/3)^n}{Σ[l=1〜n-1]{(5/6){(6/5)^n}(15/14)^(l-1)-(9/7)^(l-1)}
    > =(9/28){(2/3)^n}{(35/3){(6/5)^n}{(15/14)^(n-1)-1}-(7/2){(9/7)^(n-1)-1}}
    > =(9/28){(2/3)^n}{(35/3){(6/5)(9/7)^(n-1)-(6/5)^n}-(7/2)(9/7)^(n-1)+7/2}
    > =(3/14){(2/3)^(n-1)}{14・(9/7)^(n-1)-14・(6/5)^(n-1)-(7/2)(9/7)^(n-1)+7/2}
    > =(3/2){(2/3)^(n-1)}{2・(9/7)^(n-1)-2・(6/5)^(n-1)-(1/2)(9/7)^(n-1)+1/2}
    > =(3/2){(2/3)^(n-1)}{(3/2)(9/7)^(n-1)-2・(6/5)^(n-1)+1/2}
    > ={(2/3)^(n-1)}{(9/4)(9/7)^(n-1)-3・(6/5)^(n-1)+3/4}
    > =(9/4)(6/7)^(n-1)-3・(4/5)^(n-1)+(3/4)(2/3)^(n-1)
    >
    > ∴
    > (i)n≧4のとき
    > P[n]=R[4,2]q[n-2]
    > =(3/4)(6/7)^(n-3)-(4/5)^(n-3)+(1/4)(2/3)^(n-3)
    > (ii)n=1,2,3のとき
    > 箱を空にするには最低4回問題の行動をする必要があるので
    > P[n]=0
    > (もっと簡単な方法があるかもしれません。)


    1回目に (2,3) が取り出された場合,1 が今後取り出されることがなくなるので箱からすべての玉が取り出されることがなくなります。
    この計算では個数のみを気にしていて取り出され方が加味されていないようなので先の例が起こることが加味されていません。
    おそらくこの計算よりさらに複雑になります。
引用返信/返信 [メール受信/OFF]
■51989 / ResNo.4)  Re[1]: 確率
□投稿者/ X 一般人(4回)-(2022/10/20(Thu) 18:17:48)
    >>nackyさんへ
    ご指摘ありがとうございます。
    >>ピザさんへ
    もう見ていないかもしれませんが、ごめんなさい。
    nackyさんの仰る通りです。
    私の回答は無視して下さい。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-4]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■51958 / 親記事)  確率の不等式
□投稿者/ 中国 一般人(1回)-(2022/09/28(Wed) 21:50:48)
    0<p<1, nは正の整数
    のとき
    (1-p)^n p / (1-(1-p)^(2n+1)) <1/(2n+1)
    の証明をご教示下さい.
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■52440 / ResNo.1)  Re[1]: 確率の不等式
□投稿者/ WIZ 一般人(19回)-(2024/01/07(Sun) 14:23:52)
    べき乗演算子^は四則演算子より優先度が高いものとします。
    ((1-p)^n)p/{1-(1-p)^(2n+1)} < 1/(2n+1)の証明と解釈して回答します。

    q = 1-pとおくと、0 < q < 1です。

    ((1-p)^n)p/{1-(1-p)^(2n+1)}
    = (q^n)(1-q)/{1-q^(2n+1)}
    = (q^n)/{Σ[k=0,2n]{q^k}}
    = 1/{Σ[k=-n,n]{q^k}}
    = 1/{q^0+Σ[k=1,n]{q^(-k)+q^k}}

    0 < q^(-k)かつ、0 < q^kなので、相加平均と相乗平均の大小関係より、
    q^(-k)+q^k ≧ 2√{(q^(-k))(q^k)} = 2

    但し、0 < q < 1とkは自然数より、q^(-k) ≠ q^kなので上記不等式の等号は成立しません。
    よって、q^(-k)+q^k > 2です。

    以上から、
    q^0+Σ[k=1,n]{q^(-k)+q^k} > 1+Σ[k=1,n]{2} = 2n+1
    となり、題意は成立すると言えます。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■51955 / 親記事)  345進法
□投稿者/ 345 一般人(1回)-(2022/09/16(Fri) 11:13:08)
    3進法であらわしても
    4進法であらわしても
    5進法であらわしても
    すべての桁が0または1である自然数を
    10進法であらわすとどうなりますか?
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■51956 / ResNo.1)  Re[1]: 345進法
□投稿者/ らすかる 一般人(2回)-(2022/09/16(Fri) 14:15:07)
    1と82000だけ知られており、その他にないと予想されていますが
    存在しないことは証明されていません。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■51953 / 親記事)  不等式
□投稿者/ 楽譜 一般人(1回)-(2022/09/07(Wed) 09:47:34)
    0<x<2π/3 で 5sinx/(2cosx+3)>x であることの証明を教えて下さい
引用返信/返信 [メール受信/OFF]

▽[全レス1件(ResNo.1-1 表示)]
■51954 / ResNo.1)  Re[1]: 不等式
□投稿者/ らすかる 一般人(1回)-(2022/09/07(Wed) 11:44:21)
    f(x)=5sinx/(2cosx+3)-xとすると
    f'(x)=5(3cosx+2)/(2cosx+3)^2-1
    増減を調べると
    1>cosx>-1/4で増加
    -1/4>cosx>-1/2で減少 (※x=2π/3のときcosx=-1/2)
    そして
    f(0)=0
    f(2π/3)=5√3/4-2π/3=(15√3-8π)/12>(15×1.7-8×3.15)/12=0.3>0
    なので0<x<2π/3でf(x)>0

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-1]



■記事リスト / ▲上のスレッド
■51950 / 親記事)  cox点過程
□投稿者/ エクセル 一般人(1回)-(2022/08/21(Sun) 08:41:59)
    cox点過程に関する正確な証明を与えて下さい。正しければ何でも構いません。宜しくお願いします。
引用返信/返信 [メール受信/OFF]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター