数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalフェルマーの最終定理の簡単な証明9(25) | Nomal円を30度回転させた場合の結果が見たい。(17) | Nomal確率における情報(17) | Nomalプログラミング言語BASIC言語について。(14) | Nomal期待値(13) | Nomal論理を教えて下さい(12) | Nomal円錐台の断面積(9) | Nomal二次不等式(9) | Nomalガウス整数の平方和(8) | Nomal二項定理(8) | Nomal命題の真偽(8) | Nomal無限等比数列と微分の問題です。(7) | Nomal3の個数(7) | Nomal整数解(7) | Nomal複素数平面(6) | Nomal過去ログ記事を読んでいて(6) | Nomal水かさの問題です(中学受験)(6) | Nomal部分分数分解(6) | Nomal素数(6) | Nomal順列組合せ〜区別するものしないもの(6) | Nomal三角形の辺の長さ(6) | Nomal極形式(6) | Nomalフェルマーの最終定理の証明(6) | Nomal複数の点によって構成される多角形を相互の距離情報から類推する方法(6) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal積と和が一致する自然数の組(5) | Nomal複素数の関数(5) | Nomal素数積の評価〜ベルトラン・チェビシェフの定理(5) | Nomal群の問題(5) | Nomal進数の表現(4) | Nomal高校数学 整数問題(4) | Nomal整数の表現の同値証明(4) | Nomal不等式(4) | Nomal係数(4) | Nomal整数の例(4) | Nomal式の値(4) | Nomal高校受験の問題です(4) | Nomalおすすめの本(4) | Nomal二重積分(4) | Nomal多項式(4) | Nomal確率(4) | Nomal大学数学統計学の問題(4) | Nomal複素数(4) | Nomal必要十分条件(4) | Nomal導関数(4) | NomalLambert W関数を用いた数式(4) | Nomal論理式(4) | Nomal放物線の標準形(4) | Nomallog(1+x)<√x(4) | Nomal円と3次関数(4) | Nomal因数分解(4) | Nomalカタラン数(4) | Nomal複素関数の部分分数分解(4) | Nomal全ての 整数解 等(4) | Nomal正射影再び(笑)(4) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal極大と変曲(4) | Nomalsinの不等式(4) | Nomal合同式の計算(4) | Nomallogの計算(3) | Nomal極限(3) | Nomalこれだけで求められるの?(3) | Nomal二次方程式の定数を求める(3) | Nomal数学はゲーム(3) | Nomal複素数(3) | Nomal積分(3) | Nomal素数(3) | Nomal不等式(3) | Nomal数列の極限(3) | Nomal積分の応用(3) | Nomal複素数の問題(3) | Nomal辺の和の最小値(3) | Nomal角度(3) | Nomal必要十分条件(3) | Nomal三角関数(3) | Nomalベクトルの大きさ(3) | Nomal和の求め方がわかりません。(3) | Nomal極限(3) | Nomal三角形の角(3) | Nomalコラッツ予想について(3) | Nomalフィボナッチ数列について。(3) | Nomal円と曲線(3) | NomalΣと積分の交換(3) | Nomal2次方程式(3) | Nomal(削除)(3) | Nomal連立方程式(3) | Nomalピタゴラスの定理の簡単な証明(3) | Nomalリーマン積分可能性(3) | Nomal統計/区画幅について(3) | Nomal統計学についての質問(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal囲まれた面積(2) | Nomal複素数(2) | Nomal確率(2) | Nomal低レベルな問題ですいません(2) | Nomal環でしょうか(2) | Nomal速度(2) | Nomali^iについて(2) | Nomal円に内接する四角形(2) | Nomal場合の数(2) | Nomal質問(2) |



■記事リスト / ▼下のスレッド
■50525 / 親記事)  複素積分
□投稿者/ Megumi 一般人(11回)-(2020/10/12(Mon) 15:34:35)
     添付図の問題でとりあえず(1)について教えて下さい。
    z = e^it
    dz = ie^it dt

    ∫c1 1/z dz = ∫[-π→π](1/e^it) ie^it dt

    = i[t][-π→π] = -2πi

    ∫c1 1/z^2 dz = ∫[-π→π](1/(e^it)^2) ie^it dt
    = i∫[-π→π]e^(-it) dt
    = -[e^(-it)][-π→π]
    = -( e^(iπ) - e^(-iπ) )
    = - ( 2isin(π) ) = 0

     上記の解答がダメな理由を教えて下さい。本の解答は

    ∫c1 1/z dz = -πi
    ∫c1 1/z^2 dz = 2i

    となっています。

1388×566 => 250×101

1602484475.png
/99KB
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50526 / ResNo.1)  Re[1]: 複素積分
□投稿者/ Megumi 一般人(12回)-(2020/10/12(Mon) 19:37:34)
    2020/10/12(Mon) 20:34:55 編集(投稿者)

     一応自己解決(笑)。
     たぶん α=-i、β=i の誤植だろうと思います。

引用返信/返信 [メール受信/OFF]
■50527 / ResNo.2)  Re[1]: 複素積分
□投稿者/ X 一般人(3回)-(2020/10/13(Tue) 22:29:24)
    誤植ではありません。

    (1)(2)ともに半円の経路積分であって
    円周の周回積分ではありません。
    その点に注意してもう一度計算を
    見直してみましょう。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50520 / 親記事)  テイラー展開
□投稿者/ るり 一般人(1回)-(2020/10/07(Wed) 13:23:17)
    全問じゃなくて大丈夫ですが分かる方お願いします
1080×476 => 250×110

20201006_204609.jpg
/58KB
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50521 / ResNo.1)  Re[1]: テイラー展開
□投稿者/ Megumi 一般人(10回)-(2020/10/07(Wed) 20:30:05)
     たぶん誰も回答しませんよ、こんなめんどーな計算(笑)。
     wolframa で

      f_x = D[1/√(1+x^2+y^2),x] = -x/(1+x^2+y^2)^(3/2)
      f_y = D[1/√(1+x^2+y^2),y] = -y/(1+x^2+y^2)^(3/2)
      f_xx = D[-x/(1+x^2+y^2)^(3/2),x] = (2x^2-y^2-1)/(1+x^2+y^2)^(5/2)
      f_xy = D[-x/(1+x^2+y^2)^(3/2),y] = 3xy/(1+x^2+y^2)^(5/2)
      f_yy = D[-y/(1+x^2+y^2)^(3/2),y] = (-x^2+2y^2-1)/(1+x^2+y^2)^(5/2)

    を計算したら、あとは展開式に放り込むだけ。

引用返信/返信 [メール受信/OFF]
■50524 / ResNo.2)  Re[2]: テイラー展開
□投稿者/ るり 一般人(2回)-(2020/10/08(Thu) 16:46:57)
    ありがとうございます。
    やっぱり面倒くさい計算ですよね...
    再履なのですが再履の人に出す問題じゃないですよね。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50510 / 親記事)  z^5 = -1 を解く
□投稿者/ Megumi 一般人(6回)-(2020/09/25(Fri) 09:42:44)
     z^5 = 1 と同じように解いたのですが、これでいいのでしょうか?
     
      z = r(cosθ+isinθ)    (r、θは実数)

      z^5 = r^5(cosθ+isinθ)^5
        = r^5(cos5θ+isin5θ)
      -1 = -1 + 0i = 1(cosπ + isin0)
     実部と虚部を比較して
      r^5 = 1, 5θ = (2n+1)π  (n = 0, 1, 2, 3, 4)
     したがって
      r = 1
      θ = π/5, 3π/5, 5π/5 = π/5, 7π/5, 9π/5
     ゆえに
      z = 1,
      cos(π/5) + isin(π/5) = e^(iπ/5)    重解?
      cos(3π/5) + isin(3π/5) = e^(i3π/5)
      cos(7π/5) + isin(7π/5) = e^(i7π/5)
      cos(9π/5) + isin(9π/5) = e^(i9π/5)

引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50511 / ResNo.1)  Re[1]: z^5 = -1 を解く
□投稿者/ らすかる 一般人(19回)-(2020/09/25(Fri) 11:20:18)
    >  -1 = -1 + 0i = 1(cosπ + isin0)
    >  実部と虚部を比較して
    >   r^5 = 1, 5θ = (2n+1)π  (n = 0, 1, 2, 3, 4)

    この部分は
    -1 = |-1|(cos(arg(-1))+isin(arg(-1))) = 1(cos(2n+1)π + isin(2n+1)π)
    ∴r^5=1, 5θ=(2n+1)π
    です。

    >   θ = π/5, 3π/5, 5π/5 = π/5, 7π/5, 9π/5

    5π/5はπ/5ではありません。5π/5=πです。

    >   z = 1,

    突然現れたz=1は誤りです。

    >   cos(π/5) + isin(π/5) = e^(iπ/5)    重解?

    重解ではありません。
    解は
    z=
    cos(π/5) + isin(π/5) = {√5+1+i√(10-2√5)}/4,
    cos(3π/5) + isin(3π/5) = {-√5+1+i√(10+2√5)}/4,
    cos(5π/5) + isin(5π/5) = -1,
    cos(7π/5) + isin(7π/5) = {-√5+1-i√(10+2√5)}/4,
    cos(9π/5) + isin(9π/5) = {√5+1-i√(10-2√5)}/4
    となります。
    もし最初から答えをe^(iπ/5)の形で書きたかったのであれば、
    z^5=-1=e^((2n+1)iπ)
    z=e^((2n+1)iπ/5)
    ∴z=e^(iπ/5),e^(3iπ/5),e^(5iπ/5)=e^(iπ),e^(7iπ/5),e^(9iπ/5)
    とするのが早いですし、そうでなくてもe^(iπ/5)の形を知っているならば
    こちらの答えを先に出した方が(cosとisinを書く手間が減る分)簡単だと思います。

引用返信/返信 [メール受信/OFF]
■50512 / ResNo.2)  Re[2]: z^5 = -1 を解く
□投稿者/ Megumi 一般人(7回)-(2020/09/25(Fri) 11:36:09)
    > 5π/5はπ/5ではありません。5π/5=πです。
     あちゃー、そうですね(^O^)。

     とても参考になりました。感謝です。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50506 / 親記事)  空間上の点
□投稿者/ YUASOBI 一般人(1回)-(2020/09/23(Wed) 01:28:45)
    xyz座標空間上に原点O(0,0,0)と3点A,B,Cがあり、
    Aはyz平面にあり、
    線分OA,OB,OCの長さは全て等しく、
    OAとOB、OBとOC、OCとOAは全て直交し、
    A,B,Cのz座標がそれぞれ1,2,4であるとき、
    A,B,Cの座標を求めたいです。
    教えて下さい。お願いいたします。
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50508 / ResNo.1)  Re[1]: 空間上の点
□投稿者/ らすかる 一般人(18回)-(2020/09/23(Wed) 03:14:36)
    P(0,0,t),Q(0,t,0),R(t,0,0)(t>0)とすると
    それぞれの点から平面x+ay+bz=0までの距離は
    |bt|/√(a^2+b^2+1), |at|/√(a^2+b^2+1), |t|/√(a^2+b^2+1)だから
    これが1,2,4になるためにはb=1/4,a=1/2,t=√21
    つまりP(0,0,√21),Q(0,√21,0),R(√21,0,0)から
    4x+2y+z=0までの距離が順に1,2,4。
    x'=(x-2y)/√5, y'=(2x+y)/√5, z'=zとおいて回転すると
    P'(0,0,√21),Q'(-2√105/5,√105/5,0),R'(√105/5,2√105/5,0),
    平面は(2√5)y'+z'=0
    x''=x, y''={y'-(2√5)z'}/√21, z''={(2√5)y'+z'}/√21とおいて回転すると
    P''(0,-2√5,1),Q''(-2√105/5,√5/5,2),R''(√105/5,2√5/5,4),
    平面はz''=0
    よって、このP'',Q'',R''をA,B,Cとすれば条件を満たす。
    またyz平面に関する対称移動やzx平面に関する対称移動を行っても条件を満たすので、
    解は全部で4通りあり、具体的には
    A(0,-2√5,1),B(干2√105/5,√5/5,2),C(±√105/5,2√5/5,4)(複合同順)と
    A(0,2√5,1),B(干2√105/5,-√5/5,2),C(±√105/5,-2√5/5,4)(複合同順)。
引用返信/返信 [メール受信/OFF]
■50509 / ResNo.2)  Re[2]: 空間上の点
□投稿者/ YUASOBI 一般人(2回)-(2020/09/23(Wed) 09:37:39)
    ありがとうございました!!
    とても助かりました(*´∇`*)
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]



■記事リスト / ▲上のスレッド
■50488 / 親記事)  ある式の微分における式変形について
□投稿者/ ジョンドゥ 一般人(1回)-(2020/08/31(Mon) 10:55:28)
    画像の式変形についての質問なのですが、黒文字の部分が矢印の先になるように式変形できるようです。
    私は赤文字のように積の微分の公式を用いて試みたのですがうまくいかず、皆様のお知恵を拝借させていただきたいです。
    よろしくお願いします。
2048×1536 => 250×187

E218289B-A6CD-4F84-81B2-62EAEA3847DC.jpeg
/163KB
引用返信/返信 [メール受信/OFF]

▽[全レス2件(ResNo.1-2 表示)]
■50489 / ResNo.1)  Re[1]: ある式の微分における式変形について
□投稿者/ らすかる 一般人(13回)-(2020/08/31(Mon) 11:43:10)
    pで微分してるんですよね?
    {(p^x)(1-p)^(n-x)}'
    ={p^x}'(1-p)^(n-x)+(p^x){(1-p)^(n-x)}'
    =xp^(x-1)(1-p)^(n-x)+(p^x)(n-x)(1-p)^(n-x-1){(1-p)}'
    =xp^(x-1)(1-p)^(n-x)-(p^x)(n-x)(1-p)^(n-x-1)
    です。

引用返信/返信 [メール受信/OFF]
■50490 / ResNo.2)  Re[2]: ある式の微分における式変形について
□投稿者/ ジョンドゥ 一般人(3回)-(2020/08/31(Mon) 13:38:45)
    らすかる様

    ありがとうございます。
    合成関数の微分が抜けていたのですね。。
    初歩的なミスでおはずかしい限りです。

    数式もご記入くださりありがとうございました。
    非常に分かり易かったです。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-2]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター