数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalフェルマーの最終定理の簡単な証明9(25) | Nomal円を30度回転させた場合の結果が見たい。(17) | Nomal確率における情報(17) | Nomalプログラミング言語BASIC言語について。(14) | Nomal期待値(13) | Nomal論理を教えて下さい(12) | Nomal円錐台の断面積(9) | Nomal二次不等式(9) | Nomalガウス整数の平方和(8) | Nomal二項定理(8) | Nomal命題の真偽(8) | Nomal無限等比数列と微分の問題です。(7) | Nomal3の個数(7) | Nomal整数解(7) | Nomal複素数平面(6) | Nomal過去ログ記事を読んでいて(6) | Nomal水かさの問題です(中学受験)(6) | Nomal部分分数分解(6) | Nomal素数(6) | Nomal順列組合せ〜区別するものしないもの(6) | Nomal三角形の辺の長さ(6) | Nomal極形式(6) | Nomalフェルマーの最終定理の証明(6) | Nomal複数の点によって構成される多角形を相互の距離情報から類推する方法(6) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal積と和が一致する自然数の組(5) | Nomal複素数の関数(5) | Nomal素数積の評価〜ベルトラン・チェビシェフの定理(5) | Nomal群の問題(5) | Nomal進数の表現(4) | Nomal高校数学 整数問題(4) | Nomal整数の表現の同値証明(4) | Nomal不等式(4) | Nomal係数(4) | Nomal整数の例(4) | Nomal式の値(4) | Nomal高校受験の問題です(4) | Nomalおすすめの本(4) | Nomal二重積分(4) | Nomal多項式(4) | Nomal確率(4) | Nomal大学数学統計学の問題(4) | Nomal複素数(4) | Nomal必要十分条件(4) | Nomal導関数(4) | NomalLambert W関数を用いた数式(4) | Nomal論理式(4) | Nomal放物線の標準形(4) | Nomallog(1+x)<√x(4) | Nomal円と3次関数(4) | Nomal因数分解(4) | Nomalカタラン数(4) | Nomal複素関数の部分分数分解(4) | Nomal全ての 整数解 等(4) | Nomal正射影再び(笑)(4) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal極大と変曲(4) | Nomalsinの不等式(4) | Nomal合同式の計算(4) | Nomallogの計算(3) | Nomal極限(3) | Nomalこれだけで求められるの?(3) | Nomal二次方程式の定数を求める(3) | Nomal数学はゲーム(3) | Nomal複素数(3) | Nomal積分(3) | Nomal素数(3) | Nomal不等式(3) | Nomal数列の極限(3) | Nomal積分の応用(3) | Nomal複素数の問題(3) | Nomal辺の和の最小値(3) | Nomal角度(3) | Nomal必要十分条件(3) | Nomal三角関数(3) | Nomalベクトルの大きさ(3) | Nomal和の求め方がわかりません。(3) | Nomal極限(3) | Nomal三角形の角(3) | Nomalコラッツ予想について(3) | Nomalフィボナッチ数列について。(3) | Nomal円と曲線(3) | NomalΣと積分の交換(3) | Nomal2次方程式(3) | Nomal(削除)(3) | Nomal連立方程式(3) | Nomalピタゴラスの定理の簡単な証明(3) | Nomalリーマン積分可能性(3) | Nomal統計/区画幅について(3) | Nomal統計学についての質問(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal囲まれた面積(2) | Nomal複素数(2) | Nomal確率(2) | Nomal低レベルな問題ですいません(2) | Nomal環でしょうか(2) | Nomal速度(2) | Nomali^iについて(2) | Nomal円に内接する四角形(2) | Nomal場合の数(2) | Nomal質問(2) |



■記事リスト / ▼下のスレッド
■50893 / 親記事)  ベクトルの大きさ
□投稿者/ 掛け流し掛け流し 一般人(1回)-(2021/07/07(Wed) 23:39:36)
    平面上のベクトル a,bが

      |a+2b|=1、|2a−b|=1

    を満たしているとき、|a−2b|の取り得る値の範囲を求めよ。

    (答えは、1/5<=|a−2b|<=7/5)

    の解法を教えてください。

    よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■50895 / ResNo.1)  Re[1]: ベクトルの大きさ
□投稿者/ WIZ 一般人(12回)-(2021/07/08(Thu) 13:44:08)
    2021/07/08(Thu) 15:19:21 編集(投稿者)

    xy座標でべクトルを原点 (0, 0) を始点とた終点の座標 (x, y) で表すことにすると、
    |(x, y)| = √(x^2+y^2) です。

    p, q, r, s を実数として、a = (p, q), b = (r, s) とします。

    |a+2b| = |(p, q)+2(r, s)| = |(p+2r, q+2s)| = 1
    ⇒ (p+2r)^2+(q+2s)^2 = 1^2 ・・・・・(0)

    上記より、ある実数 u が存在して
    p+2r = cos(u) ・・・・・(1)
    q+2s = sin(u) ・・・・・(2)
    とおけます。

    |2a-b| = |2(p, q)-(r, s)| = |(2p-r, 2q-s)| = 1
    ⇒ (2p-r)^2+(2q-s)^2 = 1^2

    上記より、ある実数 v が存在して
    2p-r = cos(v) ・・・・・(3)
    2q-s = sin(v) ・・・・・(4)
    とおけます。

    (1)(3)より
    (p+2r)+2(2p-r) = cos(u)+2cos(v)
    ⇒ p = (cos(u)+2cos(v))/5 ・・・・・(5)
    ⇒ r = 2(cos(u)+2cos(v))/5-cos(v) = (2cos(u)-cos(v))/5 ・・・・・(6)

    (2)(4)より
    (q+2s)+2(2q-s) = sin(u)+2sin(v)
    ⇒ q = (sin(u)+2sin(v))/5 ・・・・・(7)
    ⇒ s = 2(sin(u)+2sin(v))/5-sin(v) = (2sin(u)-sin(v))/5 ・・・・・(8)

    |a-2b| = |(p, q)-2(r, s)| = |(p-2r, q-2s)|
    ⇒ |a-2b|^2 = (p-2r)^2+(q-2s)^2 = (p+2r)^2+(q+2s)^2-8pr-8qs
    (0)(5)(6)(7)(8)より、
    ⇒ |a-2b|^2 = 1-8((cos(u)+2cos(v))/5)((2cos(u)-cos(v))/5)-8((sin(u)+2sin(v))/5)((2sin(u)-sin(v))/5)
    = 1-(8/25)((cos(u)+2cos(v))(2cos(u)-cos(v))+(sin(u)+2sin(v))(2sin(u)-sin(v)))
    = 1-(8/25)(2cos(u)^2+3cos(u)cos(v)-2cos(v)^2+2sin(u)^2+3sin(u)sin(v)-2sin(v)^2)
    = 1-(8/25)(2(cos(u)^2+sin(u)^2)+3(cos(u)cos(v)+sin(u)sin(v))-2(cos(v)^2+sin(v)^2))
    = 1-(8/25)(2+3cos(u-v)-2)
    = 1-(24/25)cos(u-v)

    -1 ≦ cos(u-v) ≦ 1 ですから
    1-(24/25)(1) ≦ |a-2b|^2 ≦ 1-(24/25)(-1)
    ⇒ 1/25 ≦ |a-2b|^2 ≦ 49/25

    |a-2b| ≧ 0 だから、1/5 ≦ |a-2b| ≦ 7/5 となります。
引用返信/返信 [メール受信/OFF]
■50897 / ResNo.2)  Re[2]: ベクトルの大きさ
□投稿者/ 掛け流し掛け流し 一般人(2回)-(2021/07/09(Fri) 02:30:10)
    分かりずらいよ。もっと短く説明して
引用返信/返信 [メール受信/OFF]
■51789 / ResNo.3)  Re[1]: ベクトルの大きさ
□投稿者/ nacky 一般人(2回)-(2021/12/22(Wed) 10:08:19)
    x=a+2b, y=2a-b とおくと条件より |x|=|y|=1 であり
    a=(x+2y)/5, b=(2x-y)/5
    となります.
    よって
    a-2b=(-3x+4y)/5
    となるので問題は
    「|x|=|y|=1 のとき |(-3x+4y)/5| の範囲を求めよ」
    と言い換えることができます. これを解きましょう.

    まず

    |(-3x+4y)/5|=|-3x+4y|/5

    なので |-3x+4y| の範囲を調べます.
    二つのベクトル u,v の内積を単に積の様に uv と書くことにすると

    |-3x+4y|^2=(-3x+4y)(-3x+4y)
    =9|x|^2-24xy+16|y|^2
    =25-24xy   (|x|=|y|=1 を使った)

    内積の定義より

    xy=|x||y|cosθ=cosθ

    となり

    -1<=xy<=1

    となることがわかるので

    1<=|-3x+4y|^2<=49.

    |-3x+4y| は非負の数なので

    1<=|-3x+4y|<=7

    したがって

    1/5<=|(-3x+4y)/5|<=7/5

    である.

    以上から答えのとおり

    1/5<=|a-2b|<=7/5

    が得られました.

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50792 / 親記事)  和の求め方がわかりません。
□投稿者/ さんご 一般人(1回)-(2021/05/18(Tue) 19:50:47)
     の求め方を知りたいです。
    答えは1+aになるそうですが、なぜそうなるのかがわかりません。


引用返信/返信 [メール受信/ON]

▽[全レス3件(ResNo.1-3 表示)]
■50793 / ResNo.1)  Re[1]: 和の求め方がわかりません。
□投稿者/ らすかる 付き人(51回)-(2021/05/19(Wed) 00:02:06)
    a>0ならば
    無限級数の公式Σ[k=0〜∞]r^k=1/(1-r)に
    r=a/(1+a)を代入すれば求まります。

引用返信/返信 [メール受信/OFF]
■50794 / ResNo.2)  Re[2]: 和の求め方がわかりません。
□投稿者/ さんご 一般人(2回)-(2021/05/19(Wed) 09:55:29)
    理解できました!ありがとうございます!!
引用返信/返信 [メール受信/OFF]
■50800 / ResNo.3)  Re[3]: 和の求め方がわかりません。
□投稿者/ さんご 一般人(3回)-(2021/05/22(Sat) 13:47:01)
    解決しました
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50783 / 親記事)  極限
□投稿者/ ルーシー 一般人(1回)-(2021/05/17(Mon) 15:19:31)
    nは自然数で
    lim[x→1]{n/(x^n-1)-1/(x-1)}
    を教えて下さい
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■50784 / ResNo.1)  Re[1]: 極限
□投稿者/ X 一般人(6回)-(2021/05/17(Mon) 17:18:39)
    (i)n=1のとき
    (与式)=0
    (ii)n≧2のとき
    (与式)=lim[x→1]{n(x-1)-(x^n-1)}/{(x-1)(x^n-1)}
    =lim[x→1]{n-nx^(n-1)}/{(x^n-1)+n(x-1)x^(n-1)}
    =lim[x→1]{-n(n-1)x^(n-2)}/{2nx^(n-1)+n(n-1)(x-1)x^(n-2)}
    =-(n-1)/2
    ((∵)ロピタルの定理)
    これはn=1のときも成立

    まとめて
    (与式)=-(n-1)/2
引用返信/返信 [メール受信/OFF]
■50788 / ResNo.2)  Re[2]: 極限
□投稿者/ X 一般人(10回)-(2021/05/17(Mon) 17:29:53)
    別解)
    (与式)=lim[x→1]{n-Σ[k=0〜n-1]x^k}/(x^n-1)
    ∴t=x^nと置くと
    (与式)=lim[x→1]{n-Σ[k=0〜n-1]t^(k/n)}/(t-1)
    ここで
    f(t)=Σ[k=0〜n-1]t^(k/n)
    と置くと
    f'(t)=Σ[k=1〜n-1](k/n)t^(k/n-1)
    ∴微分係数の定義により
    (与式)=-f'(1)
    =-Σ[k=1〜n-1]k/n
    =-(1/n)Σ[k=1〜n-1]k
    =-(1/n)・(1/2)n(n-1)
    =-(n-1)/2
引用返信/返信 [メール受信/OFF]
■50789 / ResNo.3)  Re[3]: 極限
□投稿者/ ルーシー 一般人(2回)-(2021/05/18(Tue) 01:09:00)
    ありがとうございます!!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50682 / 親記事)  三角形の角
□投稿者/ 磯村 一般人(1回)-(2021/04/02(Fri) 08:43:11)
    三角形ABCにおいて、AB=2,BC=1,CA=√2とし、∠A=α,∠B=βとする。
    正の整数m,nがmα+nβ=πを満たすとき、mとnを全て求めよ。

    m=2,n=3は見つけられたのですが、これ以外にあるのかこれだけなのかがよく分かりませんでした。
    教えてください。
引用返信/返信 [メール受信/OFF]

▽[全レス3件(ResNo.1-3 表示)]
■50683 / ResNo.1)  Re[1]: 三角形の角
□投稿者/ らすかる 一般人(22回)-(2021/04/02(Fri) 09:59:41)
    cosα=5√2/8, sinα=√14/8
    cos2α=9/16, sin2α=5√7/16
    cos3α=5√2/64, sin3α=17√14/64
    cos4α=-47/128, sin4α=45√7/128
    cos5α=-275√2/512, sin5α=89√14/512
    cos6α=-999/1024, sin6α=85√7/1024
    sin7α<0

    cosβ=3/4, sinβ=√7/4
    cos2β=1/8, sin2β=3√7/8
    cos3β=-9/16, sin3β=5√7/16
    cos4β=-31/32, sin4β=3√7/32
    sin5β<0

    mα+nβ=πのとき
    mα=π-nβ
    sin(mα)=sin(π-nβ)=sin(nβ)
    cos(mα)=cos(π-nβ)=-cos(nβ)
    でなければならないので、m=2,n=3のみ。

引用返信/返信 [メール受信/OFF]
■50685 / ResNo.2)  Re[2]: 三角形の角
□投稿者/ 磯村 一般人(2回)-(2021/04/02(Fri) 11:01:09)
    有り難うございます。
    やはりしっかり計算して考える必要がありそうですね。。。
引用返信/返信 [メール受信/OFF]
■50686 / ResNo.3)  Re[3]: 三角形の角
□投稿者/ らすかる 一般人(23回)-(2021/04/02(Fri) 21:50:16)
    cosα=5√2/8, sinα=√14/8 から tanα=√7/5
    cosβ=3/4, sinβ=√7/4 から tanβ=√7/3
    t(x)=tanx/√7とおくとt(a+b)={t(a)+t(b)}/{1-7t(a)t(b)}
    t(α)=1/5, t(2α)=5/9, t(3α)=17/5, t(4α)=-45/47,
    t(5α)=-89/275, t(6α)=-85/999, t(7α)>0
    t(β)=1/3, t(2β)=3, t(3β)=-5/9, t(4β)=-3/31, t(5β)>0
    なので
    tan(mα)+tan(nβ)=0すなわちt(mα)+t(nβ)=0となるのはm=2,n=3のみ

    のようにすると計算がいくぶん簡単になりますが、これでも面倒ですね。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-3]



■記事リスト / ▲上のスレッド
■50679 / 親記事)  コラッツ予想について
□投稿者/ 成清 愼 一般人(1回)-(2021/03/27(Sat) 14:47:33)
http://koubeichizoku.atwebpages.com/colattz20211.pdf
    標記につきましては上記URLに拙論を記載いたしました。諸兄におかれましてはご多忙中恐縮ながらよろしくご査収の上、ご高配ご指導賜れば幸甚に存じます
引用返信/返信 [メール受信/ON]

▽[全レス3件(ResNo.1-3 表示)]
■50680 / ResNo.1)  イヴ・サンローラン
□投稿者/ vogcopy 一般人(1回)-(2021/03/30(Tue) 15:17:41)
    ファッションは消えゆくが、スタイルは永遠に残る」。比類なきデザイナー、イヴ・サンローランは、そう見事に表現した。vogcopy /vogcopy.net/一生使える宝石箱を作るなら、決して流行遅れにならないものを覚えておくことが大事。//vogcopy.net/brand-338-c0.html イヴ・サンローラン コピー /www.eklablog.com/profile/32969224

引用返信/返信 [メール受信/OFF]
■50689 / ResNo.2)  Re[1]: コラッツ予想について
□投稿者/ 極限 一般人(3回)-(2021/04/03(Sat) 03:11:40)
    間違っています。

    間違いの本質的なところは、最後の「極限において」という部分です。
    コラッツ予想の主張は「有限回の操作によって1にたどり着く」ですので、件の極限操作を行った段階でこの主張から外れたものを相手にしてしまっていることになります。

    次に、この誤りにご自身が気づきにくくしている箇所があります。
    それが"Operation transposition of Collatz"中で、S, D_0を再定義している箇所です。
    数学の証明において一度定義した対象を「再定義」することは、読み手(引いては自分自身)を混乱させる以上の効果を持ちません。
    実際ここでも「再定義」などせずに集合列 (S^0, D_0^0), (S^1, D_0^1), (S^2, D_0^2), (S^3, D_0^3), ... を用意して、「(S^n, D_0^n)に"Operation transposition of Collatz"を一度適用した結果を(S^(n+1), D_0^(n+1))とする」などとすれば同じことを混乱なく記述できます。

    そして一旦こう書いてしまうと、最初に述べた誤りが自然と浮き上がってくるのが見て取れると思います。

    有限な整数n(単に自然数と言っても同じことですが)に対して (S^n, D_0^n) が (φ, N^1) になっていると主張できるのならともかく、nに対して極限を取った (S^∞, D_0^∞) とでも書くべきものが (φ, N^1) であったとしてもそれは有限回の操作で1になることを主張するコラッツ予想を「証明」するものではありません。
引用返信/返信 [メール受信/OFF]
■51957 / ResNo.3)  Re[2]: コラッツ予想について
□投稿者/ 成清 愼 一般人(1回)-(2022/09/20(Tue) 21:27:51)
    貴重なご意見感謝いたします。ご指摘に従って「極限」という記述の部分を削除し改訂版を下記URLにアップいたしました。「再定義」のほうは使用している集合
    中に余分なものを残したくないのでご破算で願いましてはという意味で残させていただきました。何卒ご容赦願いたく。
    dongram.web.fc2.com/collatz20221.pdf
引用返信/返信 [メール受信/ON]

■記事リスト / レス記事表示 → [親記事-3]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター