数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■ 過去ログ検索の勧め⇒ここを読んでみてください
google検索

 
この掲示板の過去ログをgoogleで検索します。
検索条件:
現在のログを検索過去のログを検索
■ 2006/2/20より、累計:、本日:、昨日:
数式の記述方法
TeX入力ができます。 \[ TeX形式数式 \] あるいは,$ TeX形式数式 $ で数式を記述します。
 TeX形式数式には半角英数字のみです。詳しくは、ここを見てください。文字化けが発生したときはここを見てください。
■ 質問をする方は、回答者に失礼のないようにお願いします。
携帯電話でこの掲示板を見れるようにしました。⇒ここを見てください。
■ 24時間以内に作成されたスレッドは New で表示されます。
■ 24時間以内に更新されたスレッドは UpDate で表示されます。

記事リスト ( )内の数字はレス数
Nomalフェルマーの最終定理の簡単な証明9(25) | Nomal円を30度回転させた場合の結果が見たい。(17) | Nomal確率における情報(17) | Nomalプログラミング言語BASIC言語について。(14) | Nomal期待値(13) | Nomal論理を教えて下さい(12) | Nomal円錐台の断面積(9) | Nomal二次不等式(9) | Nomalガウス整数の平方和(8) | Nomal二項定理(8) | Nomal命題の真偽(8) | Nomal無限等比数列と微分の問題です。(7) | Nomal3の個数(7) | Nomal整数解(7) | Nomal複素数平面(6) | Nomal過去ログ記事を読んでいて(6) | Nomal水かさの問題です(中学受験)(6) | Nomal部分分数分解(6) | Nomal素数(6) | Nomal順列組合せ〜区別するものしないもの(6) | Nomal三角形の辺の長さ(6) | Nomal極形式(6) | Nomalフェルマーの最終定理の証明(6) | Nomal複数の点によって構成される多角形を相互の距離情報から類推する方法(6) | Nomal初等数学によるフェルマーの最終定理の証明(5) | Nomal積と和が一致する自然数の組(5) | Nomal複素数の関数(5) | Nomal素数積の評価〜ベルトラン・チェビシェフの定理(5) | Nomal群の問題(5) | Nomal進数の表現(4) | Nomal高校数学 整数問題(4) | Nomal整数の表現の同値証明(4) | Nomal不等式(4) | Nomal係数(4) | Nomal整数の例(4) | Nomal式の値(4) | Nomal高校受験の問題です(4) | Nomalおすすめの本(4) | Nomal二重積分(4) | Nomal多項式(4) | Nomal確率(4) | Nomal大学数学統計学の問題(4) | Nomal複素数(4) | Nomal必要十分条件(4) | Nomal導関数(4) | NomalLambert W関数を用いた数式(4) | Nomal論理式(4) | Nomal放物線の標準形(4) | Nomallog(1+x)<√x(4) | Nomal円と3次関数(4) | Nomal因数分解(4) | Nomalカタラン数(4) | Nomal複素関数の部分分数分解(4) | Nomal全ての 整数解 等(4) | Nomal正射影再び(笑)(4) | Nomalなぜ2乗? 内積の意味は??(4) | Nomal極大と変曲(4) | Nomalsinの不等式(4) | Nomal合同式の計算(4) | Nomallogの計算(3) | Nomal極限(3) | Nomalこれだけで求められるの?(3) | Nomal二次方程式の定数を求める(3) | Nomal数学はゲーム(3) | Nomal複素数(3) | Nomal積分(3) | Nomal素数(3) | Nomal不等式(3) | Nomal数列の極限(3) | Nomal積分の応用(3) | Nomal複素数の問題(3) | Nomal辺の和の最小値(3) | Nomal角度(3) | Nomal必要十分条件(3) | Nomal三角関数(3) | Nomalベクトルの大きさ(3) | Nomal和の求め方がわかりません。(3) | Nomal極限(3) | Nomal三角形の角(3) | Nomalコラッツ予想について(3) | Nomalフィボナッチ数列について。(3) | Nomal円と曲線(3) | NomalΣと積分の交換(3) | Nomal2次方程式(3) | Nomal(削除)(3) | Nomal連立方程式(3) | Nomalピタゴラスの定理の簡単な証明(3) | Nomalリーマン積分可能性(3) | Nomal統計/区画幅について(3) | Nomal統計学についての質問(3) | Nomaltan(z) を z = π/2 中心にローラン展開する(2) | Nomal囲まれた面積(2) | Nomal複素数(2) | Nomal確率(2) | Nomal低レベルな問題ですいません(2) | Nomal環でしょうか(2) | Nomal速度(2) | Nomali^iについて(2) | Nomal円に内接する四角形(2) | Nomal場合の数(2) | Nomal質問(2) |



■記事リスト / ▼下のスレッド
■50825 / 親記事)  積と和が一致する自然数の組
□投稿者/ がじゅまる 一般人(1回)-(2021/06/08(Tue) 16:15:39)
    nは2以上の自然数で、n個の自然数a[1],a[2],・・・,a[n]として
    Π[k=1,n]a[k]=Σ[k=1,n]a[k]を満たすものが存在することを示せ。
    解き方を教えてください。よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス5件(ResNo.1-5 表示)]
■50826 / ResNo.1)  Re[1]: 積と和が一致する自然数の組
□投稿者/ らすかる 付き人(56回)-(2021/06/08(Tue) 16:50:05)
    1≦k≦n-2のときa[k]=1, a[n-1]=2, a[n]=n
    とすれば和も積も2nになりますね。

引用返信/返信 [メール受信/OFF]
■50827 / ResNo.2)  Re[1]: 積と和が一致する自然数の組
□投稿者/ がじゅまる 一般人(2回)-(2021/06/08(Tue) 19:35:16)
    らすかる様、早速の回答ありがとうございます。
    追加で質問させてください。(らすかる様以外の方の回答も大歓迎です。)

    (1)存在を示すので具体的な値を提示できれば十分なことは理解できます。
    ただ、今後類似の問題への応用力を付けたいので、どの様な方法で
    1≦k≦n-2のときa[k]=1, a[n-1]=2, a[n]=n
    という値を見い出したのか教えてください。

    (2)上記の値以外に問題の条件を満たす値はあるのでしょうか?
    値は有限個でしょうか?それとも無数にあるのでしょうか?

    xとyを自然数としてxy=x+yなら、xy-x-y=0から(x-1)(y-1)=1と変形でき、
    x-1とy-1は負でない整数だからx-1=y-1=1で、
    n=2のときはx=y=2という値のみとなると思います。
    しかし、n≧3のときはお手上げです。

    よろしくお願いします。
引用返信/返信 [メール受信/OFF]
■50828 / ResNo.3)  Re[2]: 積と和が一致する自然数の組
□投稿者/ らすかる 付き人(57回)-(2021/06/08(Tue) 21:29:02)
    n=2のときは2+2=2×2=4は誰でも知っていますね。
    以下a[1]≦a[2]≦…≦a[n]とします。
    n=3のとき
    もしa[1]≧2だとするとa[2]≧2なので(積)≧4a[3]
    しかしa[1]≦a[2]≦a[3]から(和)≦3a[3]なので(和)<(積)となり成り立ちません。
    よってa[1]=1です。
    このとき1+a[2]+a[3]=a[2]a[3]から(a[2]-1)(a[3]-1)=2なのでa[2]=2,a[3]=3と決まります。
    n=4のとき
    n=3のときと同様、もしa[1]≧2だとすると(積)≧8a[4]、(和)≦4a[4]となり不適なのでa[1]=1
    a[1]=1として、もしa[2]≧2だとすると(積)≧4a[4]、(和)<4a[4](∵a[1]<a[2])となり不適なのでa[2]=1
    このとき1+1+a[3]+a[4]=a[3]a[4]から(a[3]-1)(a[4]-1)=3なのでa[3]=2,a[4]=4と決まります。
    勘が良ければこの辺で
    2,2
    1,2,3
    1,1,2,4
    から
    1,1,1,…,1,2,n
    で成り立ちそうだと気づきますが、気づかなければもう一つ
    n=5のとき
    a[1]≧2のとき(積)≧16a[5]、(和)≦5a[5]で不適
    a[1]=1,a[2]≧2のとき(積)≧8a[5]、(和)<5a[5]で不適
    a[1]=a[2]=1,a[3]≧2のとき(積)≧4a[5]、(和)≦4a[5]から(1,1,2,2,2)で成り立つ
    a[1]=a[2]=a[3]=1の場合は(a[4]-1)(a[5]-1)=4からa[4]=2,a[5]=5またはa[4]=a[5]=3
    よってn=5のときの解は
    (1,1,2,2,2),(1,1,1,3,3),(1,1,1,2,5)の3通り
    ここまでやれば
    (a[2]-1)(a[3]-1)=2
    (a[3]-1)(a[4]-1)=3
    (a[4]-1)(a[5]-1)=4
    という計算をしたことから、同様の計算で行けることに気づくと思います。

    つまりn≦4では解は1組ですが、n≧5では解は1つとは限りません。

引用返信/返信 [メール受信/OFF]
■50829 / ResNo.4)  Re[1]: 積と和が一致する自然数の組
□投稿者/ WIZ 一般人(4回)-(2021/06/09(Wed) 17:37:25)
    横から失礼します。

    値をソートして 1 ≦ a[1] ≦ a[2] ≦ ・・・ ≦ a[n-1] ≦ a[n] とすると、
    1 ≦ k ≦ n で a[k]/a[n] ≦ 1 です。

    a[1]a[2]・・・a[n-1]a[n] = a[1]+a[2]+・・・+a[n-1]+a[n]
    ⇒ a[1]a[2]・・・a[n-1] = (a[1]/a[n])+(a[2]/a[n])+・・・+(a[n-1]/a[n])+(a[n]/a[n]) ≦n

    つまり、a[1]a[2]・・・a[n-1] は n 以下の自然数を因数分解したものとなります。
    n 以下の自然数は有限個です。

    また、個々の自然数を n-1 の自然数の積で表す表現数は、
    a[1]a[2]・・・a[n-1] = k ≦ n ならば、1 ≦ a[1] ≦ k, 1 ≦ a[2] ≦ k, ・・・, 1 ≦ a[n-1] ≦ k なので、
    (a[1], a[2], ・・・, a[n-1]) の組の数は高々 k^(n-1) 個となり、表現数も有限通りといえます。

    (a[1], a[2], ・・・, a[n-1]) の各組に対して、a[1]a[2]・・・a[n-1] = k, a[1]+a[2]+・・・+a[n-1] = m
    とすると、k*a[n] = m+a[n] となり、この a[n] 対する1次方程式が解ける場合は、
    自然数になるとは限らないが a[n] の値は一意に決まりますので、
    題意の解の個数も有限個となります。


    以下、蛇足。

    a[1]a[2]・・・a[n-1] = 1 つまり a[1] = a[2] = ・・・ = a[n-1] = 1 とすると、
    a[n] = (n-1)+a[n] ⇒ 0 = n-1 > 0 と矛盾。n ≧ 2 なので。

    a[1]a[2]・・・a[n-1] = k ≧ 2 で a[1] = a[2] = ・・・ = a[n-2] = 1, a[n-1] = k とすると、
    k*a[n] = (n-2)+k+a[n] ⇒ a[n] = (n-2+k)/(k-1) = 1+(n-1)/(k-1)
    k = 2 なら a[n] = 1+(n-1)/(2-1) = n。これはらすかるさんの提示した解。

    一般に n = m(k-1)+1 という形なら、a[n] = 1+m となる解があります。
    5 = 1*(5-1)+1 ⇒ m = 1, k = 5 ⇒ (1, 1, 1, 5, 2) #大小関係が崩壊してますが!
    5 = 2*(3-1)+1 ⇒ m = 2, k = 3 ⇒ (1, 1, 1, 3, 3)
    5 = 4*(2-1)+1 ⇒ m = 4, k = 2 ⇒ (1, 1, 1, 2, 5)
    # a[1] = a[2] = ・・・ = a[n-2] = 1 という場合のみの解ですので、
    # a[n-2] 以前に 2 以上の値があるパターンは上記方法では網羅できません。
引用返信/返信 [メール受信/OFF]
■50842 / ResNo.5)  Re[1]: 積と和が一致する自然数の組
□投稿者/ がじゅまる 一般人(3回)-(2021/06/12(Sat) 21:55:20)
    らすかる様、WIZ様解説ありがとうこざいます。
    お礼が遅くなりごめんなさい。

    ある程度の試し算は必要だけど値は求められるのですね。
    また条件を満たす値が有限個であることが分かりました。

    ありがとうございました。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-5]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50441 / 親記事)  複素数の関数
□投稿者/ 高校3年生 一般人(1回)-(2020/08/13(Thu) 20:59:03)
    虚部が正の複素数の集合をHとする。
    aを実数の定数とし、z∈Hに対し関数f(z)を
    f(z)=(z+a)/(2z+1)
    と定める。
    f(z)の値域がHの部分集合となるとき
    f(z)の値域はH自身であることを
    教えてほしいので、よろしくお願いします。
引用返信/返信 [メール受信/OFF]

▽[全レス5件(ResNo.1-5 表示)]
■50442 / ResNo.1)  Re[1]: 複素数の関数
□投稿者/ WIZ 一般人(5回)-(2020/08/14(Fri) 09:27:02)
    問題文は合ってますか?

    「z∈Hに対し関数f(z)を〜」は f(z) の定義域は H 全体、
    「f(z)の値域がHの部分集合」は z が H 全体を動いても常に f(z) の虚部が正ということですよね?

    i を虚数単位、x, y を実数、y > 0 として z = x+yi とおきます。

    f(z) = (z+a)/(2z+1)
    = ((x+yi)+a)/(2(x+yi)+1)
    = {((x+a)+yi)((2x+1)-yi)}/{(2x+1)+yi)((2x+1)-yi)}
    = {((x+a)(2x+1)+y^2)+((2x+1)y-(x+a)y)i}/{(2x+1)^2+y^2}
    = {(2x^2+(2a+1)x+a+y^2)+(xy+(1-a)y)i}/{(2x+1)^2+y^2}

    f(z) ∈ H である為には、(xy+(1-a)y)/{(2x+1)^2+y^2} > 0 となることが必要です。
    y > 0 かつ 1/{(2x+1)^2+y^2} > 0 だから x+1-a > 0 でなければなりません。
    つまり、x > a-1 という制限がついてしまい、z = x+yi が H 全体を動くことができません。
    従って、題意を満たす関数 f(z) は存在しないということになります。
    # a = -∞ なら x は実数全体を動けるなんていうオカルト数学的なオチじゃないですよね?

    題意の f(z) が存在しないならば、その値域をどの様に解釈しても矛盾はしません。
    だから、「f(z) の値域が H の部分集合なら、それは H 自身である」という言明は数学的に真でも偽でも良い訳です。
    なので、上記言明は真であると結論した、ということでしょうか?
    高校数学なら出題者がそんな結論を期待しているとは思えないので、やはり問題文が間違っていると思います。

    # 勘違い、計算間違いしていたらごめんなさい!
引用返信/返信 [メール受信/OFF]
■50445 / ResNo.2)  Re[2]: 複素数の関数
□投稿者/ 高校3年生 一般人(2回)-(2020/08/14(Fri) 09:45:24)
    = ((x+yi)+a)/(2(x+yi)+1)
    = {((x+a)+yi)((2x+1)-yi)}/{(2x+1)+yi)((2x+1)-yi)}
    ここは
    = ((x+yi)+a)/(2(x+yi)+1)
    = {((x+a)+yi)((2x+1)-2yi)}/{(2x+1)+2yi)((2x+1)-2yi)}
    ではないでしょうか?
引用返信/返信 [メール受信/OFF]
■50446 / ResNo.3)  Re[1]: 複素数の関数
□投稿者/ 黄桃 一般人(1回)-(2020/08/14(Fri) 09:55:30)
    素朴にやってできると思います。

    z=x+yi として、f(z)を(分母の共役を分子分母にかけて) fr(x)+fi(y)i の形に書けば、
    「f(z)の値域がHの部分集合となる」は
    y>0 ならば fi(y)>0
    といってますから、まずこの条件(*)を求めます。

    この時に、f(z)の値域がH全体になることをいうのですが、この場合は逆写像gが簡単に求まるのでそれを使えば楽でしょう。
    つまり、w=f(z) をzについて解いて、z=g(w) としたとき、
    w∈H なら、z∈H がいえれば w∈Hについてw=f(z)となるz∈Hがあることがわかったので、証明終です。
    それには、w=a+bi,g(a+bi)=gr(a)+gi(b)i とするとき、(*)かつ b>0 なら gi(b)>0がいえればOKです。

    参考までに、手元の計算では、(*)は a<1/2 となりました。

引用返信/返信 [メール受信/OFF]
■50447 / ResNo.4)  Re[1]: 複素数の関数
□投稿者/ WIZ 一般人(6回)-(2020/08/14(Fri) 11:26:15)
    > = {((x+a)+yi)((2x+1)-2yi)}/{(2x+1)+2yi)((2x+1)-2yi)}
    > ではないでしょうか?

    確かに! 計算間違いして、その後ダラダラ御託を書いてしまい申し訳ありません!

    {((x+a)+yi)((2x+1)-2yi)}/{(2x+1)+2yi)((2x+1)-2yi)}
    = {((x+a)(2x+1)+2y^2)+((2x+1)y-(x+a)(2y))i}/{(2x+1)^2+(2y)^2}
    = {(2x^2+(2a+1)x+a+2y^2)+(y-2ay)i}/{(2x+1)^2+(2y)^2}

    より、1-2a > 0 つまり 1/2 > a であることと、
    「f(z) の値域が H の部分集合なら、それは H 自身である」であることは同値ですね。
引用返信/返信 [メール受信/OFF]
■50449 / ResNo.5)  Re[2]: 複素数の関数
□投稿者/ 高校3年生 一般人(3回)-(2020/08/14(Fri) 16:48:52)
    お二人とも有難うございます。
    >逆写像gが簡単に求まるのでそれを使えば楽
    たしかに言われてみたらそうでした。
    難しく考えすぎていました。
解決済み!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-5]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50251 / 親記事)  素数積の評価〜ベルトラン・チェビシェフの定理
□投稿者/ 富豪閣 一般人(1回)-(2020/03/17(Tue) 14:24:37)
     ここの過去スレにありましたが、AKITOの部屋のベルトラン・チェビシェフの定理の証明の過程で表れる

     2 以上の自然数 n に対し、P≦n を満たす素数 P の積 P[n] は 2^(2n-3) 以下である。・・・・・(※)

    という定理についての質問です。動画は
      ttps://www.youtube.com/watch?v=AhbgNe-E2S0
    です。

      ・--------------・--------------・-------------・---
      1         √(2n)        2n/3         n
                 <------------->
              ここの素数積の評価 P[0]

     ※より
      P ≦ 2n/3 を満たす素数 P の積 P[1] は  P[1] ≦ P2^(4n/3-3)
      P ≦ √(2n) を満たす素数 P の積 P[2] は P[2] ≦ 2^(2√(2n)/3-3)
    であるから
      √(2n) < P ≦ 2n/3 を満たす素数 P の積 P[0] は
                   2^(4n/3-3)
      P[0] = P1/P2 ≦ ────────
                  2^(2√(2n)/3-3)
    と評価するのは誤りである。

     この '誤り' についてなのですが、これがよくわかりにくいです。

      P[0] ≦ P2^(4n/3-3)

    ではあっても

      P[0] ≦ 2^(2√(2n)/3-3)

    とは言えず

      P2 ≦ 2^(2√(2n)/3-3) ⇒ 1/P2 ≧ 1/( 2^(2√(2n)/3-3) )

    ですから

      P[0] ≦ 1/2^(2√(2n)/3-3)

    ともいえない。しかし、ここから
            2^(4n/3-3)
      P[0] ≦ ────────
           2^(2√(2n)/3-3)
    誤りだとするのがわかりにくいです。

引用返信/返信 [メール受信/OFF]

▽[全レス5件(ResNo.1-5 表示)]
■50252 / ResNo.1)  Re[1]: 素数積の評価〜ベルトラン・チェビシェフの定理
□投稿者/ らすかる 一般人(5回)-(2020/03/17(Tue) 15:42:30)
    P1≦A … (1)
    P2≧B … (2)
    であれば、(2)から
    1/P2≦1/B … (3)
    なので(1)と(3)の両辺を掛けて
    P1/P2≦A/B … (4)
    となりますが、(2)の不等号が逆なので
    (4)は言えません。
    例えば素数列2,3,5,7,11,…で
    P≦10を満たす素数の積P1はP1≦210
    P≦4を満たす素数の積P2はP2≦105
    を満たしますが
    4<P≦10である素数の積P0はP0=P1/P2≦2
    は成り立ちませんね。

引用返信/返信 [メール受信/OFF]
■50253 / ResNo.2)  Re[2]: 素数積の評価〜ベルトラン・チェビシェフの定理
□投稿者/ 富豪閣 一般人(2回)-(2020/03/17(Tue) 16:00:21)
     丁寧な回答まことにありがとうございます。大変よくわかりました。ちょっと自分が勘違いしているところがありました。

引用返信/返信 [メール受信/OFF]
■50256 / ResNo.3)  Re[2]: 素数積の評価〜ベルトラン・チェビシェフの定理
□投稿者/ コルム 一般人(2回)-(2020/03/21(Sat) 08:57:13)
    らすかるさんあの、説明が少し間違っているように思うのですが。教えていただけないでしょうか?すみません。
引用返信/返信 [メール受信/OFF]
■50257 / ResNo.4)  Re[3]: 素数積の評価&#12316;ベルトラン・チェビシェフの定理
□投稿者/ スペイン風邪 一般人(1回)-(2020/03/21(Sat) 12:30:09)
    No50256に返信(コルムさんの記事)
    > らすかるさんあの、説明が少し間違っているように思うのですが。教えていただけないでしょうか?すみません。


    どこが間違っているというのでしょうか?
引用返信/返信 [メール受信/OFF]
■50258 / ResNo.5)  Re[3]: 素数積の評価〜ベルトラン・チェビシェフの定理
□投稿者/ 都の西北倭背堕の隣罵化多大学 一般人(3回)-(2020/03/21(Sat) 12:58:25)
    > らすかるさんあの、説明が少し間違っているように思うのですが。
     あちこちで間抜けな質問をしているやつが、まあそんな偉そうなこと言えるもんだなwwwwwwwwwwwwwwwwww。

引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-5]



■記事リスト / ▼下のスレッド / ▲上のスレッド
■50180 / 親記事)  群の問題
□投稿者/ もけ 一般人(1回)-(2019/11/20(Wed) 21:00:49)
    (G,・)を半群とする
    Gの任意の元g,hに対して、あるGの元i,jが存在し、
    g・i=h
    j・g=h
    が成立する。
    (G,・)が群であることを示せ。

    この問題がわかりません…どなたか教えてください
引用返信/返信 [メール受信/OFF]

▽[全レス5件(ResNo.1-5 表示)]
■50181 / ResNo.1)  Re[1]: 群の問題
□投稿者/ ast 一般人(1回)-(2019/11/20(Wed) 21:41:00)
    2019/11/20(Wed) 21:45:32 編集(投稿者)

    [0] は半群だから結合法則はOK
    [i] は任意だから特にのときを考えると, そのときのに対してを考えればとなり, 任意のに対してが成り立つことになるので, 定義によりこのの単位元. (以降この単位元をと書くことにする)
    [ii] 上と同様にのときを考えると, そのときのに対してを考えればとなり, に対してが成り立つことになるので, 定義によりこのの逆元.
引用返信/返信 [メール受信/OFF]
■50182 / ResNo.2)  Re[2]: 群の問題
□投稿者/ もけ 一般人(2回)-(2019/11/20(Wed) 22:46:44)
    返信ありがとうございます。二つ質問させていただきたいのですが、
    @単位元の証明で、ijを考えるとi=jがどういうステップを踏んでいるのかがわかりません。
    A単位元の証明で、これで証明したことは、あくまで「任意のg∈Gに対して、あるi∈Gが存在し、gi=ig=g」であり、単位元の定義である「あるi∈Gが存在し、任意のg∈Gに対して、gi=ig=g」ではない気がします。あると任意のの順番が変わるのはアウトだった気がします。
    大変恐縮ですが、ご返事頂けると嬉しいです。
引用返信/返信 [メール受信/OFF]
■50183 / ResNo.3)  Re[3]: 群の問題
□投稿者/ ast 一般人(2回)-(2019/11/20(Wed) 23:03:03)
    そうですね, おっしゃる通りだいぶ勘違いしたようです. すみません.
引用返信/返信 [メール受信/OFF]
■50184 / ResNo.4)  Re[4]: 群の問題
□投稿者/ m 一般人(1回)-(2019/11/21(Thu) 01:24:01)
    単位元の存在のみ示します。
    を一つ固定する。
    仮定よりが成り立つ。
    このに対し、が成り立つ。
    (∵をとる。仮定よりで、
    )
    同様にしてとなるが存在する。
    このときよりが単位元。

    どうでしょう。
引用返信/返信 [メール受信/OFF]
■50185 / ResNo.5)  Re[5]: 群の問題
□投稿者/ もけ 一般人(3回)-(2019/11/21(Thu) 16:47:57)
    これなら良さそうですね、ありがとうございます!
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-5]



■記事リスト / ▲上のスレッド
■52506 / 親記事)  進数の表現
□投稿者/ tass 一般人(1回)-(2024/04/17(Wed) 10:14:07)
    b進数の整数の表現のためのコストをlog[b](M+1)*bと定義する時、値が最小になるb(>=2)を求めよ。

    例:10進数で0から999999までの整数を表現するコストはlog[10](100000)*10

    解き方が分かりません!やり方を教えてください
引用返信/返信 [メール受信/ON]

▽[全レス4件(ResNo.1-4 表示)]
■52507 / ResNo.1)  Re[1]: 進数の表現
□投稿者/ らすかる 一般人(6回)-(2024/04/17(Wed) 13:11:13)
    f(b)=blog[b](M+1)=log(M+1)・b/logbとおくと
    f'(b)=log(M+1)・(logb-1)/(logb)^2
    bが実数ならばlogb-1=0すなわちb=eのときにf(b)が最小値をとるから、
    bが整数の場合の最小値はf(2)かf(3)のどちらか。
    2/log2=4/(2log2)=4/log4からf(2)=f(4)であり
    f(3)<f(4)だから、f(3)<f(2)となりb=3のとき最小。

引用返信/返信 [メール受信/OFF]
■52508 / ResNo.2)  Re[1]: 進数の表現
□投稿者/ WIZ 一般人(1回)-(2024/04/17(Wed) 13:34:28)
    # らすかるさんが既にコメントされていますが、私も一生懸命下書きを作ったので書き込ませて頂きます。

    質問の問題文が曖昧だと思います。

    Mが定義されていないので、何の値かが不明です。
    > 例:10進数で0から999999までの整数を表現するコストはlog[10](100000)*10

    「例」での数の範囲「10進数で0から999999まで」に含まれる整数の個数は1000000個で、
    「log[10](100000)*10」の100000は0が1つ(1桁)少ないのは何故? 書き間違い???

    以下、私の想像で補った解釈で回答しますので、話半分に聞いといてください。
    ・「b進数」「b(>=2)」ということなので、bは2以上の整数である。
    ・Mを固定して、log[b](M+1)*bを最小にするbを求めれば良い。

    自然対数をlnで表すことにします。b ≧ 2に対して
    f(b) = log[b](M+1)*b = ln(M+1)*{b/ln(b)}とおきます。

    f'(b) = ln(M+1)*{(1*ln(b)-b*(1/b))/(ln(b)^2)} = ln(M+1)*{(ln(b)-1)/(ln(b)^2)}
    eを自然対数の底とすれば、
    2 ≦ b < eで、f'(b) < 0なので、f(b)は減少
    b = eで、f'(b) = 0なので、f(b)は極小
    e < bで、f'(b) > 0なので、f(b)は増加

    2 < e < 3かつ、bは整数なので、b = 2またはb = 3でf(b)は最小になります。
    f(2) = ln(M+1)*{2/ln(2)}
    f(3) = ln(M+1)*{3/ln(3)}
    ⇒ f(2)/f(3) = (2/3){ln(3)/ln(2)} = log[2](3^(2/3)) = log[2](9^(1/3)) > log[2](8^(1/3)) = log[2](2) = 1
    ⇒ f(2) > f(3)

    よって、b = 3のとき、f(b) = log[b](M+1)*bは最小になります。
    # f(b)が最小になるbの値がMに依存しないので、問題文がおかしい気がする。
引用返信/返信 [メール受信/OFF]
■52509 / ResNo.3)  Re[2]: 進数の表現
□投稿者/ tass 一般人(2回)-(2024/04/17(Wed) 14:10:41)
    ありがとうございます&#128583;&#8205;♀&#65039;
引用返信/返信 [メール受信/OFF]
■52510 / ResNo.4)  Re[2]: 進数の表現
□投稿者/ らすかる 一般人(7回)-(2024/04/17(Wed) 17:03:27)
    2024/04/17(Wed) 17:04:13 編集(投稿者)

    > WIZさん
    「何進法が最も効率が良いか」という話ですので、Mに依存しないのは問題ないと思います。
    また、Mは具体例(というか、ここでいう「コスト」の意味)を考えやすいように定めたものと思います。
引用返信/返信 [メール受信/OFF]

■記事リスト / レス記事表示 → [親記事-4]






Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター