 | べき乗演算子^は四則演算子より優先度が高いものとします。 I = ∫[0,1]{(√(x/(1-x)))log(x)}dx とおきます。
x = sin(t)^2 とおくと、tの積分範囲は[0,π/2]となります。 広義積分ということで、0 < x = sin(t)^2 < 1 と考えれば、 0 < t < π/2 となり、0 < sin(t) < 1 かつ 0 < cos(t) < 1 となります。
dx = 2sin(t)cos(t)dt √(x/(1-x)) = √(sin(t)^2/(1-sin(t)^2)) = √(sin(t)^2/cos(t)^2) = tan(t) となりますので、 I = ∫[0,π/2]{tan(t)log(sin(t)^2)}*2sin(t)cos(t)dt = 4∫[0,π/2]{(sin(t)^2)log(sin(t))}dt = 4[-cos(t)sin(t)log(sin(t))]_[0,π/2]-4∫[0,π/2]{(-cos(t)){cos(t)log(sin(t))+sin(t)(cos(t)/sin(t))}}dt
ここで、ロピタルの定理より lim[t→0]{sin(t)log(sin(t))} = lim[t→0]{log(sin(t))/(1/sin(t))} = lim[t→0]{(cos(t)/sin(t))/(-cos(t)/sin(t)^2)} = lim[t→0]{-sin(t)} = 0 ですので、 I = -4(0-0)+4∫[0,π/2]{(cos(t)^2)log(sin(t))+cos(t)^2}dt = 4∫[0,π/2]{(1-sin(t)^2)log(sin(t))+(1+cos(2t))/2}dt ⇒ 2I = 4∫[0,π/2]{log(sin(t))}dt+2[t-sin(2t)/2]_[0,π/2] ⇒ I = 2∫[0,π/2]{log(sin(t))}dt+π/2
J = ∫[0,π/2]{log(sin(t))}dt とおきます。
t = π/2-u とおくと、 J = ∫[π/2,0]{log(cos(u))}(-du) = ∫[0,π/2]{log(cos(u))}du ⇒ 2J = ∫[0,π/2]{log(sin(t))+log(cos(u))}dt = ∫[0,π/2]{log(sin(2t)/2)}dt = ∫[0,π/2]{log(sin(2t))-log(2)}dt
v = 2t とおくと、 2J = ∫[0,π]{log(sin(v))}(dv/2)-(π/2)log(2) = (1/2)∫[0,π]{log(sin(t))}dt-(π/2)log(2)・・・・・(1)
t = π-w とおくと、 J = ∫[π,π/2]{log(sin(w))}(-dw) = ∫[π/2,π]{log(sin(w))}dw ⇒ 2J = ∫[0,π]{log(sin(t))}dt・・・・・(2)
(1)(2)より、 2J = (1/2)(2J)-(π/2)log(2) ⇒ J = -(π/2)log(2)
以上から、 I = 2J+π/2 = π/2-πlog(2)
# もっと上手い計算方法があるかもしれません。
|