数学ナビゲーター掲示板

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

■52876 / 親記事)  相加相乗で
  
□投稿者/ 相加相乗 一般人(1回)-(2025/05/15(Thu) 05:51:58)
    相加相乗平均の不等式を使って x+1/x-1/(x+1) (x>0) の最小値を求められますか?
引用返信/返信 [メール受信/OFF] 削除キー/
■52883 / ResNo.1)  Re[1]: 相加相乗で
□投稿者/ WIZ 一般人(11回)-(2025/05/25(Sun) 08:49:10)
    解答ではなく参考情報です。
    べき乗演算子^は四則演算子より優先度が高いものとします。

    x > 0 で f(x) = x+1/x-1/(x+1) = x+1/(x^2+x) とおくと、1/(x^2+x) > 0 ですから、
    相加相乗平均の大小関係から f(x) ≧ 2√(x*(1/(x^2+x))) = 2√(1/(x+1)) となり、
    0 < 2√(1/(x+1)) < 2 だから最小値があればこの範囲の値だろうとは推論できます。

    そもそも最小値が存在するのかどうかも分からない状態で、
    ある定数sに対して f(x) ≧ s の形に持ち込めるのか試行錯誤しても徒労に終わる可能性があります。

    余談ですが数学では「どうしてそれを思い付いたのか」を説明する必要はないので、
    いきなり s = {-3+√(13+16√2)}/2, w = {(-1+√2)+√(2√2-1)}/2 とおけば、
    x > 0 で f(x) ≧ s であり、f(w) = s であることさえ示せればsが最小値であるといえると思います。

    とは言っても、f(x)を眺めていただけで最小値 {-3+√(13+16√2)}/2 を見出せる方はいないと思うので、
    以下、相加相乗平均の不等式は使いませんが、最小値の存在とその値の求め方を解説します。

    f'(x) = (x^4+2x^3+x^2-2x-1)/{(x^2)(x+1)^2}

    f'(x)の分母は正なので、分子の符号を調べます。
    g(x) = x^4+2x^3+x^2-2x-1 とおくと、
    g'(x) = 4x^3+6x^2+2x-2
    g''(x) = 12x^2+12x+2 = 3(2x+1)^2-1 > 0
    # x > 0なので2x+1 > 1 ⇒ 3(2x+1)^2 > 3

    x > 0 で g''(x) > 0 なので g'(x) は単調増加です。
    g'(0) = -2, g'(1) = 10 なので、0 < u < 1 となる実数uで g'(u) = 0
    0 < x < u で g'(x) < 0 なのでg(x)は減少、g(x) < 0
    x = u で g'(x) = 0 なのでg(x)は極小、g(x) < 0
    u < x で g'(x) > 0 なのでg(x)は増加

    つまり、0 < u < w < 1 となる実数wが存在して、
    u < x < w で g'(x) > 0 なのでg(x)は増加、g(x) < 0
    x = w で g'(x) > 0 なのでg(x)は増加、g(x) = 0
    w < x で g'(x) > 0 なのでg(x)は増加、g(x) > 0
    となる訳で、g(x)とf'(x)の符号は同じだから x = w でf(x)は極小になるといえます。

    g(x) = 0 となる x = w を求めます。フェラーリの公式を使うた為、y = x+1/2とおくと、
    x^4+2x^3+x^2-2x-1 = y^4-(1/2)y^2-2y+1/16 = 0
    ⇒ y^4+z(y^2)+(z^2)/4 = (z+1/2)y^2+2y+((z^2)/4-1/16)

    右辺も平方完成できるようにzを定めます。分解方程式は右辺の2次式の判別式を0とおけば良いので
    2^2-4(z+1/2)((z^2)/4-1/16) = 0
    ⇒ z^3+(1/2)z^2-(1/4)z-33/8 = 0
    ⇒ 8z^3+4z^2-2z-33 = (2z-3)((2z)^2+4(2z)+11) = 0

    z = 3/2 と選ぶと、
    ⇒ (y^2+3/4)^2 = 2(y+1/2)^2
    ⇒ {y^2-(√2)y+(3-2√2)/4}{y^2+(√2)y+(3+2√2)/4} = 0
    と因数分解できます。

    上記後半の2次方程式は実数解を持ちません。
    前半の2次方程式は実数解を持ちますが、x = y-1/2 > 0 を満たすのは
    y = {(√2)+√(2√2-1)}/2 のみで、w = {(-1+√2)+√(2√2-1)}/2 となります。
    よって、最小値は f(w) = {-3+√(13+16√2)}/2 となります。

引用返信/返信 [メール受信/OFF] 削除キー/
■52885 / ResNo.2)  Re[1]: 相加相乗で
□投稿者/ WIZ 一般人(12回)-(2025/05/26(Mon) 07:24:14)
    2025/05/26(Mon) 15:22:36 編集(投稿者)

    最小値が存在することを前提とする別解です。

    f(x) = x+1/(x^2+x) ≧ 2√(1/(x+1)) > 0 なので、最小値sは s > 0 となります。
    すると、f(x) = (x^3+x^2+1)/(x^2+x) ≧ s となりますが、
    x^2+x > 0ですので、(x^3+x^2+1)-s(x^2+x) ≧ 0 となります。

    つまり、h(x) = x^3+(1-s)x^2-sx+1 ≧ 0 とおくことができます。
    またwを正の実数定数として h(w) = 0 ならば、s = f(w) が求める最小値となります。

    h'(x) = 3x^2+2(1-s)x-s です。
    x > 0 の範囲で「h(x) ≧ 0」かつ「h(x) = 0となるxが存在する」ということは、
    xy座標で y = h(x) のグラフが x > 0 の範囲で極小値を持ち、その極小なる点でx軸に接する必要があります。
    h(x)が極小になるのが x = w > 0 とすると、「x = wはh(x) = 0の重解」かつ「h'(w) = 0」となることが必要です。

    h(w) = w^3+(1-s)w^2-sw+1 = 0・・・・・(1)
    h'(w) = 3w^2+2(1-s)w-s = 0・・・・・(2)

    (1)より、3w^3+3(1-s)w^2-3sw+3 = 0・・・・・(3)
    (2)より、3w^3+2(1-s)w^2-sw = 0・・・・・(4)
    (3)-(4)より、(1-s)w^2-2sw+3 = 0
    ⇒ 3(1-s)w^2-6sw+9 = 0・・・・・(5)

    (2)より、3(1-s)w^2+2((1-s)^2)w-s(1-s) = 0・・・・・(6)
    (6)-(5)より、{2((1-s)^2)+6s}w-s(1-s)-9
    ⇒ 2(s^2+s+1)w+(s^2-s-9)

    ここで、s^2+s+1 > 0 ですので、w = (-1/2)(s^2-s-9)/(s^2+s+1) となります。

    h'(w) = 0 = 3{(-1/2)(s^2-s-9)/(s^2+s+1)}^2+2(1-s)(-1/2)(s^2-s-9)/(s^2+s+1)-s
    整理すると s^4+6s^3+7s^2-6s-31 = 0 となります。

    4次方程式 s^4+6s^3+7s^2-6s-31 = 0 をフェラーリの公式を使って解こうとすると、
    分解方程式は有理数解を持たないので簡単には因数分解できません。
    分解方程式をカルダーノの公式で解くことはできますが、解は非常に複雑な式となり、
    元の4次方程式の因数分解も非常に困難な計算となり、諦めました(!)。

    そこで、複2次式に変形できないか試行錯誤の末、以下のようになりました。
    a, b, c, dを定数として、
    s^4+6s^3+7s^2-6s-31
    = (s^2+as+b)^2+c(s^2+as+b)+d
    = s^4+2as^3+(a^2+2b+c)s^2+(2ab+ac)s+(b^2+bc+d)
    と変形できると仮定します。

    係数を比較して、
    2a = 6・・・・・(A)
    a^2+2b+c = 7・・・・・(B)
    2ab+ac = -6・・・・・(C)
    b^2+bc+d = -31・・・・・(D)

    (A)より、a = 3・・・・・(E)
    (E)を(B)に代入すると、3^2+2b+c = 7 ⇒ 2b+c = -2・・・・・(F)
    (E)を(C)に代入すると、2*3b+3c = -6 ⇒ 2b+c = -2・・・・・(Fと同じ)
    ⇒ c = -2b-2・・・・・(G)

    (G)を(D)に代入すると、b^2+b(-2b-2)+d = -31 ⇒ -b^2-2b+d = -31・・・・・(H)
    (G)(H)と式が2個で変数は3個なので、b = 0とすれば c = -2, d = -31 となります。

    以上から、
    s^4+6s^3+7s^2-6s-31 = (s^2+3s)^2-2(s^2+3s)-31 = 0
    ⇒ s^2+3s = 1±√32 = 1±4√2

    s^2+3s > 0 なので、s^2+3s = 1+4√2 です。
    ⇒ s = {-3±√(13+16√2)}/2

    s > 0 なので、s = {-3+√(13+16√2)}/2 となります。
    # 本当はwの値を求めるなりして、w > 0 を確認する必要がありますが・・・省略!
引用返信/返信 [メール受信/OFF] 削除キー/



スレッド内ページ移動 / << 0 >>

このスレッドに書きこむ

Mode/  Pass/

HOME HELP 新規作成 新着記事 ツリー表示 スレッド表示 トピック表示 発言ランク ファイル一覧 検索 過去ログ

- Child Tree -
Edit By 数学ナビゲーター